1 Preparation

1.1 Loading FFT-coefficients

shape_8 <- read.csv("Condyle_lang_vs2.csv", header=T, sep=";")

1.2 Data subsets

A_shape <- shape_8[which(shape_8$Species2 == 'A'), ]
B_shape <- shape_8[which(shape_8$Species2 == 'B'), ]
E_shape <- shape_8[which(shape_8$Species2 == 'E'), ]
H1_shape <- shape_8[which(shape_8$Species2 == 'H1'), ]
H2_shape <- shape_8[which(shape_8$Species2 == 'H2'), ]
I_shape <- shape_8[which(shape_8$Species2 == 'I'), ]
K_shape <- shape_8[which(shape_8$Species2 == 'K'), ]
mariae_shape <- shape_8[which(shape_8$Species2 == 'mariae'), ]
minor_shape <- shape_8[which(shape_8$Species2 == 'minor'), ]
N_shape <- shape_8[which(shape_8$Species2 == 'N'), ]
O_shape <- shape_8[which(shape_8$Species2 == 'O'), ]
P_shape <- shape_8[which(shape_8$Species2 == 'P'), ]
Q1_shape <- shape_8[which(shape_8$Species2 == 'Q1'), ]
Q3_shape <- shape_8[which(shape_8$Species2 == 'Q3'), ]
Q4_shape <- shape_8[which(shape_8$Species2 == 'Q4'), ]
Q5_shape <- shape_8[which(shape_8$Species2 == 'Q5'), ]
R_shape <- shape_8[which(shape_8$Species2 == 'R'), ]
S_shape <- shape_8[which(shape_8$Species2 == 'S'), ]
typica_shape <- shape_8[which(shape_8$Species2 == 'typica'), ]
U_shape <- shape_8[which(shape_8$Species2 == 'U'), ]
W_shape <- shape_8[which(shape_8$Species2 == 'W'), ]
weeksi_shape <- shape_8[which(shape_8$Species2 == 'weeksi'), ]
X2_shape <- shape_8[which(shape_8$Species2 == 'X2'), ]
X3_shape <- shape_8[which(shape_8$Species2 == 'X3'), ]
X4_shape <- shape_8[which(shape_8$Species2 == 'X4'), ]
X5_shape <- shape_8[which(shape_8$Species2 == 'X5'), ]
X7_shape <- shape_8[which(shape_8$Species2 == 'X7'), ]
X8_shape <- shape_8[which(shape_8$Species2 == 'X8'), ]
X9_shape <- shape_8[which(shape_8$Species2 == 'X9'), ]

typica_mean <- cbind("typica", as.data.frame(t(colMeans(shape_8[c(492:496), c(2:15)]))),"typica_mean","typica_mean", "mean")
colnames(typica_mean)[1:18] <- c("Collection","A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8","Species","Species2","Sex")

minor_mean <- cbind("minor", as.data.frame(t(colMeans(shape_8[c(487:491), c(2:15)]))),"minor_mean","minor_mean", "mean")
colnames(minor_mean)[1:18] <- c("Collection","A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8","Species","Species2","Sex")

mariae_mean <- cbind("mariae", as.data.frame(t(colMeans(shape_8[c(399:403), c(2:15)]))),"mariae_mean","mariae_mean", "mean")
colnames(mariae_mean)[1:18] <- c("Collection","A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8","Species","Species2","Sex")

All <- as.data.frame(rbind(A_shape, B_shape, E_shape, H1_shape, H2_shape, I_shape, K_shape, N_shape, O_shape, P_shape, Q1_shape, Q3_shape, Q4_shape, Q5_shape, R_shape, S_shape, U_shape, W_shape, weeksi_shape, X2_shape, X3_shape, X4_shape, X5_shape, X7_shape, X8_shape, X9_shape))

All_singletons <- as.data.frame(rbind(A_shape, B_shape, E_shape, H1_shape, H2_shape, I_shape, K_shape, N_shape, O_shape, P_shape, Q3_shape, Q4_shape, Q5_shape, R_shape, S_shape, weeksi_shape, X2_shape, X3_shape, X4_shape, X5_shape, X8_shape, X9_shape)) #for typicality; minus singletons Q1,U,W,X7

All_ohne_Q <- as.data.frame(rbind(A_shape, B_shape, E_shape, H1_shape, H2_shape, I_shape, K_shape, N_shape, O_shape, P_shape, R_shape, S_shape, U_shape, W_shape, X2_shape, X3_shape, X4_shape, X5_shape, X7_shape, X8_shape, X9_shape))

Q_K_typica <- as.data.frame(rbind(K_shape, Q3_shape, Q4_shape, Q5_shape, typica_shape, typica_mean))
B_H2_O_S_X8_minor <- as.data.frame(rbind(B_shape, H2_shape, O_shape, S_shape, X8_shape, minor_shape, minor_mean))
K_N_X5_mariae <- as.data.frame(rbind(K_shape, N_shape, X5_shape, mariae_shape, mariae_mean))

1.3 Distribution and correlation analyses

Pearson product moment correlation coefficient, following SOGA page 19/104.

1.3.1 Full set

pairs.panels(All[2:15], smooth = F, ellipses = T)

1.3.2 Species distribution and correlation

1.3.2.1 A

pairs.panels(A_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species A')

1.3.2.2 B

pairs.panels(B_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species B')

1.3.2.3 E

pairs.panels(E_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species E')

1.3.2.4 H1

pairs.panels(H1_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species H1')

1.3.2.5 H2

pairs.panels(H2_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species H2')

1.3.2.6 I

pairs.panels(I_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species I')

1.3.2.7 K

n = 30
set.seed(333)
sample.idx <- sample(1:nrow(K_shape), size = n)
vars <- c("A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8")
pairs.panels(K_shape[sample.idx, vars], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species K')

1.3.2.8 N

n = 30
set.seed(333)
sample.idx <- sample(1:nrow(N_shape), size = n)
vars <- c("A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8")
pairs.panels(N_shape[sample.idx, vars], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species N')

1.3.2.9 O

pairs.panels(O_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species O')

1.3.2.10 P

pairs.panels(P_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species P')

1.3.2.11 Q3

pairs.panels(Q3_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species Q3')

1.3.2.12 Q4

pairs.panels(Q4_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species Q4')

1.3.2.13 Q5

n = 30
set.seed(333)
sample.idx <- sample(1:nrow(N_shape), size = n)
vars <- c("A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8")
pairs.panels(Q5_shape[sample.idx, vars], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species Q5')

1.3.2.14 R

pairs.panels(R_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species R')

1.3.2.15 S

n = 30
set.seed(333)
sample.idx <- sample(1:nrow(N_shape), size = n)
vars <- c("A2","A3","A4","A5","A6","A7","A8","B2","B3","B4","B5","B6","B7","B8")
pairs.panels(S_shape[sample.idx, vars], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species S')

1.3.2.16 weeksi

pairs.panels(weeksi_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species weeksi')

1.3.2.17 X2

#pairs.panels(X2_shape[2:15], smooth = F, ellipses = F, 
#             main = 'Pearson product moment correlation coefficient for species X2')

1.3.2.18 X3

pairs.panels(X3_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species X3')

1.3.2.19 X4

pairs.panels(X4_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species X4')

1.3.2.20 X5

pairs.panels(X5_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species X5')

1.3.2.21 X8

pairs.panels(X8_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species X8')

1.3.2.22 X9

pairs.panels(X9_shape[2:15], smooth = F, ellipses = F, 
             main = 'Pearson product moment correlation coefficient for species X9')

2 Principal Component Analysis (PCA)

2.1 All

All.pca <- princomp(All[c(2:15)])
ggord(All.pca, All$Species2,size = 2.5, vec_ext=0.03, axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0) #+ xlim(-0.08,0.07) + ylim(-0.075, 0.03)

#ggord(All.pca, All$Species2,size = 2.5, vec_ext= 0.03, axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = FALSE, obslab = TRUE)
ggord(All.pca, All$Species2,size = 2.5, vec_ext=0.03, axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0) #+ xlim(-0.08,0.07) + ylim(-0.04, 0.045)

PC1, PC2, and PC3 explain 39.3%, 19.4%, and 10.5% of the variance in the dataset, respectively. Hence, a lot of variability is captured by further PCs. Also, carapace shapes of the closely related Q-species (Q1, Q3, Q4, Q5, weeksi) are highly variable. To further reveal morphological relationships between the Q-species and between the remaining species, we are carrying out two further PCAs for each of these groups.

2.2 All without Q species

All_ohne_Q.pca <- princomp(All_ohne_Q[c(2:15)])
ggord(All_ohne_Q.pca, All_ohne_Q$Species2,size = 2.5, vec_ext=0.03, axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0) #+ xlim(-0.08,0.07) + ylim(-0.075, 0.03)

2.3 All plus type specimens

shape_8.pca <- princomp(shape_8[c(2:15)])
ggord(shape_8.pca, shape_8$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0) #+ xlim(-0.075,0.055) + ylim(-0.04, 0.055)

ggord(shape_8.pca, shape_8$Species2,size = 2.5, vec_ext=0.03,axes = c("2", "3"), hull = TRUE, ellipse=FALSE, arrow = 0) #+ xlim(-0.04,0.055) + ylim(-0.04, 0.04)

2.4 Q_K_typica

Q_K_typica.pca <- princomp(Q_K_typica[c(2:15)])
ggord(Q_K_typica.pca, Q_K_typica$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(Q_K_typica.pca, Q_K_typica$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

PC1, PC2, and PC3 explain 48.3%, 14.8%, and 9.1% of the variance in the dataset, respectively. The analysis of the closely related Q-species shows that each species occupies a large morphospace compared to other Ozestheria species. It also suggests that one of these species can be assigned to Ozestheria typica (see posterior probabilities and typicality values in section 4.6).

2.5 B_H2_O_S_X8_minor

B_H2_O_S_X8_minor.pca <- princomp(B_H2_O_S_X8_minor[c(2:15)])
ggord(B_H2_O_S_X8_minor.pca, B_H2_O_S_X8_minor$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(B_H2_O_S_X8_minor.pca, B_H2_O_S_X8_minor$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

2.6 K_N_X5_mariae

K_N_X5_mariae.pca <- princomp(K_N_X5_mariae[c(2:15)])
ggord(K_N_X5_mariae.pca, K_N_X5_mariae$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(K_N_X5_mariae.pca, K_N_X5_mariae$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

3 Linear Discriminant Analysis (LDA)

3.1 All

All.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = All, na.action = na.omit)
All.lda.values <- predict(All.lda)

ggord(All.lda, All$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(All.lda, All$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

LD1 and LD2 explain 51.5% and 16.7% of the between-group variance, respectively.

3.2 All without Q

All_ohne_Q.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = All_ohne_Q, na.action = na.omit)
All_ohne_Q.lda.values <- predict(All_ohne_Q.lda)

ggord(All_ohne_Q.lda, All_ohne_Q$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(All_ohne_Q.lda, All_ohne_Q$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

3.3 All plus type specimens

shape_8.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = shape_8, na.action = na.omit)
shape_8.lda.values <- predict(shape_8.lda)

ggord(shape_8.lda, shape_8$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(shape_8.lda, shape_8$Species2,size = 2.5, vec_ext=0.03,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

3.4 Q_K_typica

Q_K_typica.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = Q_K_typica, na.action = na.omit)
Q_K_typica.lda.values <- predict(Q_K_typica.lda)

ggord(Q_K_typica.lda, Q_K_typica$Species2,size = 2.5, vec_ext=0.01,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

ggord(Q_K_typica.lda, Q_K_typica$Species2,size = 2.5, vec_ext=0.01,axes = c("1", "3"), hull = TRUE, ellipse=FALSE, arrow = 0)

3.5 B_H2_O_S_X8_minor

B_H2_O_S_X8_minor.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = B_H2_O_S_X8_minor, na.action = na.omit)
B_H2_O_S_X8_minor.lda.values <- predict(B_H2_O_S_X8_minor.lda)

ggord(B_H2_O_S_X8_minor.lda, B_H2_O_S_X8_minor$Species2,size = 2.5, vec_ext=0.01,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

3.6 K_N_X5_mariae

K_N_X5_mariae.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = K_N_X5_mariae, na.action = na.omit)
K_N_X5_mariae.lda.values <- predict(K_N_X5_mariae.lda)

ggord(K_N_X5_mariae.lda, K_N_X5_mariae$Species2,size = 2.5, vec_ext=0.01,axes = c("1", "2"), hull = TRUE, ellipse=FALSE, arrow = 0)

4 Classification of type specimens

Following Boedeker and Kearns (2019) Linear Discriminant Analysis for prediction of group membership

options(width = 120)
n.class <- 22 #number of species
p <- 14 #number of predictors
N <- 475

All_singletons.lda <- lda(Species2 ~ A2+A3+A4+A5+A6+A7+A8+B2+B3+B4+B5+B6+B7+B8, method = "moment", data = All_singletons, na.action = na.omit)

### means of Fourier coefficients (predictors) within species (class) ###
mean.A <- c(mean(A_shape$A2), mean(A_shape$A3),mean(A_shape$A4),mean(A_shape$A5),mean(A_shape$A6),mean(A_shape$A7),mean(A_shape$A8), mean(A_shape$B2), mean(A_shape$B3), mean(A_shape$B4), mean(A_shape$B5), mean(A_shape$B6), mean(A_shape$B7), mean(A_shape$B8))

mean.B <- c(mean(B_shape$A2), mean(B_shape$A3),mean(B_shape$A4),mean(B_shape$A5),mean(B_shape$A6),mean(B_shape$A7),mean(B_shape$A8), mean(B_shape$B2), mean(B_shape$B3), mean(B_shape$B4), mean(B_shape$B5), mean(B_shape$B6), mean(B_shape$B7), mean(B_shape$B8))

mean.E <- c(mean(E_shape$A2), mean(E_shape$A3),mean(E_shape$A4),mean(E_shape$A5),mean(E_shape$A6),mean(E_shape$A7),mean(E_shape$A8), mean(E_shape$B2), mean(E_shape$B3), mean(E_shape$B4), mean(E_shape$B5), mean(E_shape$B6), mean(E_shape$B7), mean(E_shape$B8))

mean.H1 <- c(mean(H1_shape$A2), mean(H1_shape$A3),mean(H1_shape$A4),mean(H1_shape$A5),mean(H1_shape$A6),mean(H1_shape$A7),mean(H1_shape$A8), mean(H1_shape$B2), mean(H1_shape$B3), mean(H1_shape$B4), mean(H1_shape$B5), mean(H1_shape$B6), mean(H1_shape$B7), mean(H1_shape$B8))

mean.H2 <- c(mean(H2_shape$A2), mean(H2_shape$A3),mean(H2_shape$A4),mean(H2_shape$A5),mean(H2_shape$A6),mean(H2_shape$A7),mean(H2_shape$A8), mean(H2_shape$B2), mean(H2_shape$B3), mean(H2_shape$B4), mean(H2_shape$B5), mean(H2_shape$B6), mean(H2_shape$B7), mean(H2_shape$B8))

mean.I <- c(mean(I_shape$A2), mean(I_shape$A3),mean(I_shape$A4),mean(I_shape$A5),mean(I_shape$A6),mean(I_shape$A7),mean(I_shape$A8), mean(I_shape$B2), mean(I_shape$B3), mean(I_shape$B4), mean(I_shape$B5), mean(I_shape$B6), mean(I_shape$B7), mean(I_shape$B8))

mean.K <- c(mean(K_shape$A2), mean(K_shape$A3),mean(K_shape$A4),mean(K_shape$A5),mean(K_shape$A6),mean(K_shape$A7),mean(K_shape$A8), mean(K_shape$B2), mean(K_shape$B3), mean(K_shape$B4), mean(K_shape$B5), mean(K_shape$B6), mean(K_shape$B7), mean(K_shape$B8))

mean.N <- c(mean(N_shape$A2), mean(N_shape$A3),mean(N_shape$A4),mean(N_shape$A5),mean(N_shape$A6),mean(N_shape$A7),mean(N_shape$A8), mean(N_shape$B2), mean(N_shape$B3), mean(N_shape$B4), mean(N_shape$B5), mean(N_shape$B6), mean(N_shape$B7), mean(N_shape$B8))

mean.O <- c(mean(O_shape$A2), mean(O_shape$A3),mean(O_shape$A4),mean(O_shape$A5),mean(O_shape$A6),mean(O_shape$A7),mean(O_shape$A8), mean(O_shape$B2), mean(O_shape$B3), mean(O_shape$B4), mean(O_shape$B5), mean(O_shape$B6), mean(O_shape$B7), mean(O_shape$B8))

mean.P <- c(mean(P_shape$A2), mean(P_shape$A3),mean(P_shape$A4),mean(P_shape$A5),mean(P_shape$A6),mean(P_shape$A7),mean(P_shape$A8), mean(P_shape$B2), mean(P_shape$B3), mean(P_shape$B4), mean(P_shape$B5), mean(P_shape$B6), mean(P_shape$B7), mean(P_shape$B8))

mean.Q3 <- c(mean(Q3_shape$A2), mean(Q3_shape$A3),mean(Q3_shape$A4),mean(Q3_shape$A5),mean(Q3_shape$A6),mean(Q3_shape$A7),mean(Q3_shape$A8), mean(Q3_shape$B2), mean(Q3_shape$B3), mean(Q3_shape$B4), mean(Q3_shape$B5), mean(Q3_shape$B6), mean(Q3_shape$B7), mean(Q3_shape$B8))

mean.Q4 <- c(mean(Q4_shape$A2), mean(Q4_shape$A3),mean(Q4_shape$A4),mean(Q4_shape$A5),mean(Q4_shape$A6),mean(Q4_shape$A7),mean(Q4_shape$A8), mean(Q4_shape$B2), mean(Q4_shape$B3), mean(Q4_shape$B4), mean(Q4_shape$B5), mean(Q4_shape$B6), mean(Q4_shape$B7), mean(Q4_shape$B8))

mean.Q5 <- c(mean(Q5_shape$A2), mean(Q5_shape$A3),mean(Q5_shape$A4),mean(Q5_shape$A5),mean(Q5_shape$A6),mean(Q5_shape$A7),mean(Q5_shape$A8), mean(Q5_shape$B2), mean(Q5_shape$B3), mean(Q5_shape$B4), mean(Q5_shape$B5), mean(Q5_shape$B6), mean(Q5_shape$B7), mean(Q5_shape$B8))

mean.R <- c(mean(R_shape$A2), mean(R_shape$A3),mean(R_shape$A4),mean(R_shape$A5),mean(R_shape$A6),mean(R_shape$A7),mean(R_shape$A8), mean(R_shape$B2), mean(R_shape$B3), mean(R_shape$B4), mean(R_shape$B5), mean(R_shape$B6), mean(R_shape$B7), mean(R_shape$B8))

mean.S <- c(mean(S_shape$A2), mean(S_shape$A3),mean(S_shape$A4),mean(S_shape$A5),mean(S_shape$A6),mean(S_shape$A7),mean(S_shape$A8), mean(S_shape$B2), mean(S_shape$B3), mean(S_shape$B4), mean(S_shape$B5), mean(S_shape$B6), mean(S_shape$B7), mean(S_shape$B8))

mean.weeksi <- c(mean(weeksi_shape$A2), mean(weeksi_shape$A3),mean(weeksi_shape$A4),mean(weeksi_shape$A5),mean(weeksi_shape$A6),mean(weeksi_shape$A7),mean(weeksi_shape$A8), mean(weeksi_shape$B2), mean(weeksi_shape$B3), mean(weeksi_shape$B4), mean(weeksi_shape$B5), mean(weeksi_shape$B6), mean(weeksi_shape$B7), mean(weeksi_shape$B8))

mean.X2 <- c(mean(X2_shape$A2), mean(X2_shape$A3),mean(X2_shape$A4),mean(X2_shape$A5),mean(X2_shape$A6),mean(X2_shape$A7),mean(X2_shape$A8), mean(X2_shape$B2), mean(X2_shape$B3), mean(X2_shape$B4), mean(X2_shape$B5), mean(X2_shape$B6), mean(X2_shape$B7), mean(X2_shape$B8))

mean.X3 <- c(mean(X3_shape$A2), mean(X3_shape$A3),mean(X3_shape$A4),mean(X3_shape$A5),mean(X3_shape$A6),mean(X3_shape$A7),mean(X3_shape$A8), mean(X3_shape$B2), mean(X3_shape$B3), mean(X3_shape$B4), mean(X3_shape$B5), mean(X3_shape$B6), mean(X3_shape$B7), mean(X3_shape$B8))

mean.X4 <- c(mean(X4_shape$A2), mean(X4_shape$A3),mean(X4_shape$A4),mean(X4_shape$A5),mean(X4_shape$A6),mean(X4_shape$A7),mean(X4_shape$A8), mean(X4_shape$B2), mean(X4_shape$B3), mean(X4_shape$B4), mean(X4_shape$B5), mean(X4_shape$B6), mean(X4_shape$B7), mean(X4_shape$B8))

mean.X5 <- c(mean(X5_shape$A2), mean(X5_shape$A3),mean(X5_shape$A4),mean(X5_shape$A5),mean(X5_shape$A6),mean(X5_shape$A7),mean(X5_shape$A8), mean(X5_shape$B2), mean(X5_shape$B3), mean(X5_shape$B4), mean(X5_shape$B5), mean(X5_shape$B6), mean(X5_shape$B7), mean(X5_shape$B8))

mean.X8 <- c(mean(X8_shape$A2), mean(X8_shape$A3),mean(X8_shape$A4),mean(X8_shape$A5),mean(X8_shape$A6),mean(X8_shape$A7),mean(X8_shape$A8), mean(X8_shape$B2), mean(X8_shape$B3), mean(X8_shape$B4), mean(X8_shape$B5), mean(X8_shape$B6), mean(X8_shape$B7), mean(X8_shape$B8))

mean.X9 <- c(mean(X9_shape$A2), mean(X9_shape$A3),mean(X9_shape$A4),mean(X9_shape$A5),mean(X9_shape$A6),mean(X9_shape$A7),mean(X9_shape$A8), mean(X9_shape$B2), mean(X9_shape$B3), mean(X9_shape$B4), mean(X9_shape$B5), mean(X9_shape$B6), mean(X9_shape$B7), mean(X9_shape$B8))

mean.A <- as.matrix(mean.A)
mean.B <- as.matrix(mean.B)
mean.E <- as.matrix(mean.E)
mean.H1 <- as.matrix(mean.H1)
mean.H2 <- as.matrix(mean.H2)
mean.I <- as.matrix(mean.I)
mean.K <- as.matrix(mean.K)
mean.N <- as.matrix(mean.N)
mean.O <- as.matrix(mean.O)
mean.P <- as.matrix(mean.P)
mean.Q3 <- as.matrix(mean.Q3)
mean.Q4 <- as.matrix(mean.Q4)
mean.Q5 <- as.matrix(mean.Q5)
mean.R <- as.matrix(mean.R)
mean.S <- as.matrix(mean.S)
mean.weeksi <- as.matrix(mean.weeksi)
mean.X2 <- as.matrix(mean.X2)
mean.X3 <- as.matrix(mean.X3)
mean.X4 <- as.matrix(mean.X4)
mean.X5 <- as.matrix(mean.X5)
mean.X8 <- as.matrix(mean.X8)
mean.X9 <- as.matrix(mean.X9)

### Variance-covariance matrix ###
cov.A <- cov(A_shape[2:15])
cov.B <- cov(B_shape[2:15])
cov.E <- cov(E_shape[2:15])
cov.H1 <- cov(H1_shape[2:15])
cov.H2 <- cov(H2_shape[2:15])
cov.I <- cov(I_shape[2:15])
cov.K <- cov(K_shape[2:15])
cov.N <- cov(N_shape[2:15])
cov.O <- cov(O_shape[2:15])
cov.P <- cov(P_shape[2:15])
cov.Q3 <- cov(Q3_shape[2:15])
cov.Q4 <- cov(Q4_shape[2:15])
cov.Q5 <- cov(Q5_shape[2:15])
cov.R <- cov(R_shape[2:15])
cov.S <- cov(S_shape[2:15])
cov.weeksi <- cov(weeksi_shape[2:15])
cov.X2 <- cov(X2_shape[2:15])
cov.X3 <- cov(X3_shape[2:15])
cov.X4 <- cov(X4_shape[2:15])
cov.X5 <- cov(X5_shape[2:15])
cov.X8 <- cov(X8_shape[2:15])
cov.X9 <- cov(X9_shape[2:15])

### sample size ###
n.A <- dim(A_shape) [1]
n.B <- dim(B_shape) [1]
n.E <- dim(E_shape) [1]
n.H1 <- dim(H1_shape) [1]
n.H2 <- dim(H2_shape) [1]
n.I <- dim(I_shape) [1]
n.K <- dim(K_shape) [1]
n.N <- dim(N_shape) [1]
n.O <- dim(O_shape) [1]
n.P <- dim(P_shape) [1]
n.Q3 <- dim(Q3_shape) [1]
n.Q4 <- dim(Q4_shape) [1]
n.Q5 <- dim(Q5_shape) [1]
n.R <- dim(R_shape) [1]
n.S <- dim(S_shape) [1]
n.weeksi <- dim(weeksi_shape) [1]
n.X2 <- dim(X2_shape) [1]
n.X3 <- dim(X3_shape) [1]
n.X4 <- dim(X4_shape) [1]
n.X5 <- dim(X5_shape) [1]
n.X8 <- dim(X8_shape) [1]
n.X9 <- dim(X9_shape) [1]

cov.df <- n.A+n.B+n.E+n.H1+n.H2+n.I+n.K+n.N+n.O+n.P+n.Q3+n.Q4+n.Q5+n.R+n.S+n.weeksi+n.X2+n.X3+n.X4+n.X5+n.X8+n.X9-n.class

cov.d <- 
  ((n.A-1)/cov.df)*cov.A+
  ((n.B-1)/cov.df)*cov.B+
  ((n.E-1)/cov.df)*cov.E+
  ((n.H1-1)/cov.df)*cov.H1+
  ((n.H2-1)/cov.df)*cov.H2+
  ((n.I-1)/cov.df)*cov.I+
  ((n.K-1)/cov.df)*cov.K+
  ((n.N-1)/cov.df)*cov.N+
  ((n.O-1)/cov.df)*cov.O+
  ((n.P-1)/cov.df)*cov.P+
  ((n.Q3-1)/cov.df)*cov.Q3+
  ((n.Q4-1)/cov.df)*cov.Q4+
  ((n.Q5-1)/cov.df)*cov.Q5+
  ((n.R-1)/cov.df)*cov.R+
  ((n.S-1)/cov.df)*cov.S+
  ((n.weeksi-1)/cov.df)*cov.weeksi+
  ((n.X2-1)/cov.df)*cov.X2+
  ((n.X3-1)/cov.df)*cov.X3+
  ((n.X4-1)/cov.df)*cov.X4+
  ((n.X5-1)/cov.df)*cov.X5+
  ((n.X8-1)/cov.df)*cov.X8+
  ((n.X9-1)/cov.df)*cov.X9

### determinant
d <- det(cov.d)

### Coefficients of Linear classification function (loadings)
cj.A <- solve(cov.d)%*%mean.A
cj.B <- solve(cov.d)%*%mean.B
cj.E <- solve(cov.d)%*%mean.E
cj.H1 <- solve(cov.d)%*%mean.H1
cj.H2 <- solve(cov.d)%*%mean.H2
cj.I <- solve(cov.d)%*%mean.I
cj.K <- solve(cov.d)%*%mean.K
cj.N <- solve(cov.d)%*%mean.N
cj.O <- solve(cov.d)%*%mean.O
cj.P <- solve(cov.d)%*%mean.P
cj.Q3 <- solve(cov.d)%*%mean.Q3
cj.Q4 <- solve(cov.d)%*%mean.Q4
cj.Q5 <- solve(cov.d)%*%mean.Q5
cj.R <- solve(cov.d)%*%mean.R
cj.S <- solve(cov.d)%*%mean.S
cj.weeksi <- solve(cov.d)%*%mean.weeksi
cj.X2 <- solve(cov.d)%*%mean.X2
cj.X3 <- solve(cov.d)%*%mean.X3
cj.X4 <- solve(cov.d)%*%mean.X4
cj.X5 <- solve(cov.d)%*%mean.X5
cj.X8 <- solve(cov.d)%*%mean.X8
cj.X9 <- solve(cov.d)%*%mean.X9

### Intercepts
cj0.A <- -.5*t(cj.A)%*%mean.A
cj0.B <- -.5*t(cj.B)%*%mean.B
cj0.E <- -.5*t(cj.E)%*%mean.E
cj0.H1 <- -.5*t(cj.H1)%*%mean.H1
cj0.H2 <- -.5*t(cj.H2)%*%mean.H2
cj0.I <- -.5*t(cj.I)%*%mean.I
cj0.K <- -.5*t(cj.K)%*%mean.K
cj0.N <- -.5*t(cj.N)%*%mean.N
cj0.O <- -.5*t(cj.O)%*%mean.O
cj0.P <- -.5*t(cj.P)%*%mean.P
cj0.Q3 <- -.5*t(cj.Q3)%*%mean.Q3
cj0.Q4 <- -.5*t(cj.Q4)%*%mean.Q4
cj0.Q5 <- -.5*t(cj.Q5)%*%mean.Q5
cj0.R <- -.5*t(cj.R)%*%mean.R
cj0.S <- -.5*t(cj.S)%*%mean.S
cj0.weeksi <- -.5*t(cj.weeksi)%*%mean.weeksi
cj0.X2 <- -.5*t(cj.X2)%*%mean.X2
cj0.X3 <- -.5*t(cj.X3)%*%mean.X3
cj0.X4 <- -.5*t(cj.X4)%*%mean.X4
cj0.X5 <- -.5*t(cj.X5)%*%mean.X5
cj0.X8 <- -.5*t(cj.X8)%*%mean.X8
cj0.X9 <- -.5*t(cj.X9)%*%mean.X9

4.1 Typicality all specimens

### Typicality probabilities ###
typicality <- matrix(NA, N, n.class)
colnames(typicality) <- c("typA","typB","typE","typH1","typH2","typI","typK","typN","typO","typP","typQ3","typQ4","typQ5","typR","typS","typweeksi","typX2","typX3","typX4","typX5","typX8","typX9")
for(q in 1:N) {
  case <- matrix(NA,22,1)
  case <- c(All_singletons[q,2],All_singletons[q,3],All_singletons[q,4],All_singletons[q,5],All_singletons[q,6],All_singletons[q,7],All_singletons[q,8],All_singletons[q,9],All_singletons[q,10],All_singletons[q,11],All_singletons[q,12],All_singletons[q,13],All_singletons[q,14],All_singletons[q,15])
  
  d2.A <- (t(case-mean.A))%*%solve(cov.d)%*%(case-mean.A)
  typicality[q,1] <- pchisq(d2.A, df = 14, lower.tail = FALSE)
  d2.B <- (t(case-mean.B))%*%solve(cov.d)%*%(case-mean.B)
  typicality[q,2] <- pchisq(d2.B, df = 14, lower.tail = FALSE)
  d2.E <- (t(case-mean.E))%*%solve(cov.d)%*%(case-mean.E)
  typicality[q,3] <- pchisq(d2.E, df = 14, lower.tail = FALSE)
  d2.H1 <- (t(case-mean.H1))%*%solve(cov.d)%*%(case-mean.H1)
  typicality[q,4] <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
  d2.H2 <- (t(case-mean.H2))%*%solve(cov.d)%*%(case-mean.H2)
  typicality[q,5] <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
  d2.I <- (t(case-mean.I))%*%solve(cov.d)%*%(case-mean.I)
  typicality[q,6] <- pchisq(d2.I, df = 14, lower.tail = FALSE)
  d2.K <- (t(case-mean.K))%*%solve(cov.d)%*%(case-mean.K)
  typicality[q,7] <- pchisq(d2.K, df = 14, lower.tail = FALSE)
  d2.N <- (t(case-mean.N))%*%solve(cov.d)%*%(case-mean.N)
  typicality[q,8] <- pchisq(d2.N, df = 14, lower.tail = FALSE)
  d2.O <- (t(case-mean.O))%*%solve(cov.d)%*%(case-mean.O)
  typicality[q,9] <- pchisq(d2.O, df = 14, lower.tail = FALSE)
  d2.P <- (t(case-mean.P))%*%solve(cov.d)%*%(case-mean.P)
  typicality[q,10] <- pchisq(d2.P, df = 14, lower.tail = FALSE)
  d2.Q3 <- (t(case-mean.Q3))%*%solve(cov.d)%*%(case-mean.Q3)
  typicality[q,11] <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
  d2.Q4 <- (t(case-mean.Q4))%*%solve(cov.d)%*%(case-mean.Q4)
  typicality[q,12] <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
  d2.Q5 <- (t(case-mean.Q5))%*%solve(cov.d)%*%(case-mean.Q5)
  typicality[q,13] <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
  d2.R <- (t(case-mean.R))%*%solve(cov.d)%*%(case-mean.R)
  typicality[q,14] <- pchisq(d2.R, df = 14, lower.tail = FALSE)
  d2.S <- (t(case-mean.S))%*%solve(cov.d)%*%(case-mean.S)
  typicality[q,15] <- pchisq(d2.S, df = 14, lower.tail = FALSE)
  d2.weeksi <- (t(case-mean.weeksi))%*%solve(cov.d)%*%(case-mean.weeksi)
  typicality[q,16] <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
  d2.X2 <- (t(case-mean.X2))%*%solve(cov.d)%*%(case-mean.X2)
  typicality[q,17] <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
  d2.X3 <- (t(case-mean.X3))%*%solve(cov.d)%*%(case-mean.X3)
  typicality[q,18] <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
  d2.X4 <- (t(case-mean.X4))%*%solve(cov.d)%*%(case-mean.X4)
  typicality[q,19] <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
  d2.X5 <- (t(case-mean.X5))%*%solve(cov.d)%*%(case-mean.X5)
  typicality[q,20] <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
  d2.X8 <- (t(case-mean.X8))%*%solve(cov.d)%*%(case-mean.X8)
  typicality[q,21] <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
  d2.X9 <- (t(case-mean.X9))%*%solve(cov.d)%*%(case-mean.X9)
  typicality[q,22] <- pchisq(d2.X9, df = 14, lower.tail = FALSE)
  
}
typicality <- round(typicality, digits=2)
typicality <- cbind(All_singletons[ ,c(1,17:18)], typicality)
typicality
##     Collection Species2    Sex typA typB typE typH1 typH2 typI typK typN typO typP typQ3 typQ4 typQ5 typR typS
## 69       91437        A      F 0.48 0.19 0.00  0.00  0.01 0.00 0.00 0.00 0.02 0.00  0.05  0.05  0.05 0.00 0.01
## 70       91439        A      F 0.37 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.03  0.03  0.03 0.00 0.01
## 71       91440        A      M 0.66 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.11  0.11  0.11 0.00 0.03
## 72       91441        A      F 0.59 0.22 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.00 0.00
## 73       91442        A      F 0.65 0.04 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.15  0.15  0.15 0.03 0.01
## 74       91443        A F_eggs 0.60 0.01 0.00  0.00  0.01 0.00 0.00 0.00 0.01 0.00  0.19  0.19  0.19 0.00 0.10
## 75       91444        A      M 0.65 0.83 0.00  0.00  0.00 0.00 0.00 0.00 0.05 0.00  0.25  0.25  0.25 0.00 0.13
## 76       91445        A F_eggs 0.20 0.05 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.02
## 77       91446        A      M 0.81 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.10  0.10  0.10 0.00 0.06
## 78       91447        A      M 0.65 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.01  0.11  0.11  0.11 0.00 0.14
## 79       91448        A      M 0.97 0.28 0.00  0.00  0.00 0.00 0.00 0.00 0.02 0.01  0.63  0.63  0.63 0.04 0.18
## 80       91449        A      M 0.25 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.00 0.00
## 81       91450        A      M 0.87 0.51 0.00  0.00  0.00 0.00 0.00 0.00 0.02 0.02  0.81  0.81  0.81 0.24 0.18
## 82       91451        A F_eggs 0.94 0.09 0.00  0.00  0.02 0.01 0.00 0.00 0.02 0.03  0.48  0.48  0.48 0.06 0.35
## 83       91452        A      M 0.64 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.07  0.07  0.07 0.00 0.02
## 84       91453        A      M 0.04 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.03  0.03  0.03 0.00 0.01
## 85       91454        A      M 0.62 0.18 0.00  0.01  0.00 0.00 0.00 0.00 0.04 0.00  0.76  0.76  0.76 0.08 0.35
## 86       91455        A      M 0.66 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.36  0.36  0.36 0.02 0.10
## 87       91456        A      M 0.59 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 88       91457        A      M 0.06 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 89       91458        A      M 0.65 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 90       91459        A      M 0.91 0.06 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.00 0.00
## 91       91460        A      M 0.84 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.18  0.18  0.18 0.01 0.00
## 92       91462        A      F 0.75 0.36 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.10  0.10  0.10 0.00 0.01
## 93       91463        A      M 0.53 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.09  0.09  0.09 0.00 0.00
## 94       91464        A      M 0.14 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 95       91469        A F_eggs 0.02 0.04 0.06  0.00  0.00 0.00 0.00 0.00 0.00 0.05  0.12  0.12  0.12 0.09 0.01
## 96       91470        A      F 0.69 0.10 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 97       91471        A      F 0.40 0.10 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 2        80862        B      M 0.00 0.10 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.03  0.03  0.03 0.00 0.00
## 98       91477        B      M 0.00 0.27 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 99       91478        B      M 0.03 0.54 0.00  0.00  0.00 0.01 0.00 0.00 0.02 0.00  0.22  0.22  0.22 0.05 0.06
## 100      91479        B      F 0.19 0.86 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.08  0.08  0.08 0.00 0.01
## 101      91480        B      F 0.03 0.66 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.00  0.00  0.00 0.00 0.00
## 102      91481        B      M 0.01 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 103      91482        B      F 0.06 0.90 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.02 0.01
## 104      91486        B F_eggs 0.00 0.19 0.19  0.00  0.00 0.04 0.01 0.00 0.09 0.02  0.02  0.02  0.02 0.00 0.04
## 105      91487        B      M 0.06 0.86 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.10  0.10  0.10 0.03 0.00
## 106      91489        B      F 0.06 0.38 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 107      91490        B      F 0.12 0.96 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.08  0.08  0.08 0.05 0.00
## 108      91492        B      F 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 109      91493        B      M 0.02 0.91 0.00  0.00  0.00 0.00 0.00 0.00 0.03 0.00  0.06  0.06  0.06 0.00 0.01
## 110      91494        B      M 0.00 0.11 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 111      91495        B      M 0.00 0.05 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.01 0.00
## 112      91496        B      M 0.01 0.72 0.00  0.00  0.00 0.00 0.00 0.00 0.02 0.00  0.13  0.13  0.13 0.06 0.03
## 113      91497        B F_eggs 0.00 0.84 0.02  0.00  0.00 0.00 0.00 0.00 0.02 0.00  0.06  0.06  0.06 0.03 0.02
## 114      91498        B F_eggs 0.01 0.55 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.04  0.04  0.04 0.01 0.02
## 115      91500        B      M 0.00 0.90 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.03  0.03  0.03 0.03 0.00
## 116      91501        B      F 0.03 0.17 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.06  0.06  0.06 0.03 0.00
## 117      91502        B F_eggs 0.65 0.85 0.01  0.00  0.00 0.00 0.00 0.00 0.02 0.00  0.25  0.25  0.25 0.07 0.05
## 118      91503        B      M 0.17 0.49 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 119      91504        B      M 0.00 0.11 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.05  0.05  0.05 0.01 0.00
## 120      91505        B      M 0.08 0.48 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.01 0.00
## 121      91506        B      M 0.00 0.74 0.00  0.00  0.00 0.00 0.00 0.00 0.03 0.00  0.03  0.03  0.03 0.01 0.01
## 122      91507        B      F 0.00 0.75 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 123      91508        B      M 0.01 0.64 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.05  0.05  0.05 0.02 0.00
## 124      91512        B      M 0.30 0.82 0.03  0.00  0.00 0.00 0.00 0.00 0.01 0.14  0.33  0.33  0.33 0.02 0.12
## 125      91513        B      M 0.60 0.97 0.01  0.02  0.07 0.02 0.00 0.00 0.11 0.09  0.55  0.55  0.55 0.03 0.29
## 126      91514        B F_eggs 0.35 0.84 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.16  0.16  0.16 0.01 0.03
## 127      91515        B      M 0.14 0.24 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.10  0.10  0.10 0.00 0.00
## 58       91420        E      M 0.00 0.00 0.86  0.00  0.00 0.01 0.00 0.00 0.00 0.05  0.00  0.00  0.00 0.00 0.00
## 59       91421        E F_eggs 0.00 0.00 0.91  0.00  0.00 0.01 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 60       91422        E F_eggs 0.00 0.00 0.83  0.00  0.00 0.01 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 61       91423        E F_eggs 0.00 0.00 0.62  0.00  0.00 0.04 0.00 0.00 0.00 0.10  0.01  0.01  0.01 0.00 0.01
## 62       91424        E      F 0.00 0.01 0.99  0.00  0.00 0.11 0.00 0.00 0.00 0.07  0.00  0.00  0.00 0.00 0.01
## 63       91425        E      F 0.00 0.00 0.95  0.00  0.00 0.02 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 64       91426        E      M 0.00 0.00 0.83  0.01  0.00 0.33 0.25 0.01 0.00 0.29  0.00  0.00  0.00 0.01 0.02
## 65       91427        E      M 0.00 0.08 0.99  0.00  0.00 0.27 0.05 0.00 0.00 0.07  0.01  0.01  0.01 0.01 0.02
## 66       91428        E      F 0.00 0.00 0.52  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 67       91429        E      F 0.00 0.01 0.73  0.00  0.00 0.02 0.10 0.00 0.00 0.11  0.01  0.01  0.01 0.01 0.01
## 68       91430        E      M 0.00 0.01 0.31  0.00  0.00 0.04 0.20 0.00 0.01 0.03  0.01  0.01  0.01 0.01 0.01
## 128      91532       H1      F 0.00 0.00 0.00  0.69  0.23 0.01 0.00 0.02 0.01 0.00  0.00  0.00  0.00 0.00 0.00
## 129      91533       H1 F_eggs 0.00 0.00 0.00  0.51  0.06 0.00 0.00 0.02 0.01 0.00  0.00  0.00  0.00 0.00 0.00
## 135      91544       H1      M 0.00 0.03 0.00  0.52  0.12 0.19 0.31 0.03 0.56 0.21  0.08  0.08  0.08 0.00 0.55
## 383     26637a       H1 F_eggs 0.00 0.09 0.24  0.84  0.15 0.97 0.10 0.23 0.27 0.36  0.09  0.09  0.09 0.02 0.62
## 384     26637b       H1 F_eggs 0.00 0.00 0.00  0.42  0.05 0.01 0.00 0.00 0.01 0.00  0.00  0.00  0.00 0.00 0.01
## 385     26637c       H1      M 0.00 0.00 0.00  0.76  0.04 0.20 0.14 0.11 0.53 0.17  0.08  0.08  0.08 0.01 0.72
## 386     26637d       H1 F_eggs 0.00 0.00 0.00  0.68  0.19 0.04 0.00 0.02 0.04 0.00  0.00  0.00  0.00 0.00 0.01
## 387     26637e       H1      M 0.00 0.01 0.00  0.77  0.05 0.14 0.04 0.02 0.18 0.10  0.05  0.05  0.05 0.00 0.47
## 388     26637f       H1 F_eggs 0.02 0.04 0.00  0.86  0.16 0.16 0.00 0.01 0.15 0.04  0.07  0.07  0.07 0.00 0.42
## 389     26637g       H1 F_eggs 0.00 0.00 0.00  0.90  0.04 0.34 0.00 0.78 0.02 0.08  0.00  0.00  0.00 0.00 0.05
## 390     26637h       H1      M 0.00 0.00 0.00  0.28  0.03 0.01 0.02 0.00 0.46 0.01  0.05  0.05  0.05 0.00 0.28
## 391     26637i       H1 F_eggs 0.00 0.00 0.00  0.98  0.17 0.30 0.00 0.28 0.09 0.01  0.00  0.00  0.00 0.00 0.15
## 392     26637j       H1 F_eggs 0.00 0.00 0.00  0.86  0.03 0.36 0.00 0.48 0.02 0.00  0.00  0.00  0.00 0.00 0.01
## 393     26639a       H1      M 0.00 0.00 0.00  0.99  0.26 0.71 0.01 0.68 0.24 0.08  0.00  0.00  0.00 0.00 0.37
## 394     26639b       H1      M 0.00 0.00 0.00  0.97  0.05 0.41 0.01 0.14 0.18 0.09  0.00  0.00  0.00 0.00 0.23
## 395     26639c       H1 F_eggs 0.00 0.00 0.00  0.54  0.13 0.60 0.03 0.11 0.08 0.04  0.00  0.00  0.00 0.00 0.07
## 396     26641a       H1 F_eggs 0.00 0.00 0.00  0.98  0.18 0.50 0.09 0.52 0.39 0.08  0.00  0.00  0.00 0.00 0.22
## 397     26641b       H1 F_eggs 0.00 0.00 0.00  0.70  0.03 0.09 0.00 0.19 0.07 0.03  0.00  0.00  0.00 0.00 0.04
## 398     26641c       H1      F 0.00 0.00 0.00  0.59  0.08 0.04 0.00 0.21 0.02 0.01  0.00  0.00  0.00 0.00 0.01
## 130      91539       H2 F_eggs 0.00 0.00 0.00  0.15  0.84 0.04 0.01 0.01 0.37 0.00  0.00  0.00  0.00 0.00 0.08
## 131      91540       H2 F_eggs 0.01 0.03 0.00  0.23  0.98 0.02 0.00 0.00 0.90 0.00  0.01  0.01  0.01 0.00 0.22
## 132      91541       H2 F_eggs 0.00 0.00 0.00  0.62  0.94 0.10 0.01 0.08 0.29 0.01  0.00  0.00  0.00 0.00 0.07
## 133      91542       H2 F_eggs 0.00 0.00 0.00  0.07  0.68 0.02 0.00 0.00 0.10 0.01  0.00  0.00  0.00 0.00 0.04
## 134      91543       H2 F_eggs 0.00 0.00 0.00  0.01  0.67 0.00 0.00 0.00 0.03 0.00  0.00  0.00  0.00 0.00 0.00
## 136      91546        I      M 0.00 0.00 0.04  0.05  0.02 0.78 0.13 0.04 0.02 0.02  0.00  0.00  0.00 0.00 0.05
## 137      91547        I      M 0.00 0.00 0.00  0.83  0.06 0.92 0.30 0.77 0.16 0.49  0.01  0.01  0.01 0.00 0.45
## 138      91548        I      F 0.00 0.00 0.47  0.05  0.01 0.84 0.02 0.12 0.01 0.07  0.00  0.00  0.00 0.00 0.04
## 139      91549        I      F 0.00 0.00 0.01  0.29  0.01 0.81 0.62 0.15 0.19 0.71  0.05  0.05  0.05 0.01 0.63
## 9        82539        K      F 0.00 0.00 0.47  0.00  0.00 0.03 0.25 0.00 0.00 0.05  0.01  0.01  0.01 0.01 0.01
## 10       82540        K      M 0.00 0.00 0.00  0.00  0.00 0.03 0.36 0.00 0.02 0.18  0.07  0.07  0.07 0.02 0.14
## 140      91550        K      M 0.00 0.00 0.00  0.01  0.00 0.24 0.87 0.02 0.00 0.11  0.00  0.00  0.00 0.00 0.04
## 141      91551        K      M 0.00 0.00 0.01  0.15  0.00 0.83 0.99 0.50 0.02 0.64  0.01  0.01  0.01 0.00 0.21
## 142      91552        K      M 0.00 0.00 0.00  0.18  0.00 0.22 0.19 0.40 0.00 0.08  0.00  0.00  0.00 0.00 0.04
## 143      91553        K      M 0.00 0.00 0.00  0.01  0.00 0.03 0.03 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 144      91554        K      M 0.00 0.00 0.01  0.12  0.01 0.28 0.79 0.16 0.10 0.43  0.11  0.11  0.11 0.00 0.39
## 145      91555        K      M 0.00 0.01 0.00  0.00  0.00 0.07 0.28 0.00 0.01 0.04  0.10  0.10  0.10 0.05 0.13
## 146      91556        K      M 0.00 0.00 0.00  0.57  0.07 0.83 0.99 0.40 0.45 0.50  0.11  0.11  0.11 0.01 0.72
## 147      91557        K F_eggs 0.00 0.00 0.13  0.00  0.00 0.07 0.41 0.00 0.00 0.14  0.01  0.01  0.01 0.01 0.03
## 148      91558        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.21 0.39 0.15 0.00 0.09  0.00  0.00  0.00 0.00 0.01
## 149      91559        K      M 0.00 0.00 0.00  0.00  0.00 0.02 0.77 0.01 0.01 0.07  0.00  0.00  0.00 0.00 0.02
## 150      91560        K      M 0.00 0.04 0.01  0.29  0.01 0.74 0.84 0.03 0.37 0.43  0.40  0.40  0.40 0.27 0.80
## 151      91561        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.04 0.54 0.00 0.00 0.02  0.00  0.00  0.00 0.00 0.00
## 152      91562        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.01 0.44 0.00 0.02 0.02  0.03  0.03  0.03 0.01 0.03
## 153      91563        K      F 0.00 0.00 0.04  0.00  0.00 0.20 0.92 0.02 0.00 0.03  0.00  0.00  0.00 0.01 0.02
## 154      91564        K      F 0.00 0.00 0.00  0.00  0.00 0.04 0.75 0.00 0.00 0.03  0.00  0.00  0.00 0.01 0.01
## 155      91565        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.01 0.14 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 156      91566        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.17 0.90 0.00 0.00 0.01  0.00  0.00  0.00 0.00 0.01
## 157      91567        K      F 0.00 0.00 0.00  0.00  0.00 0.03 0.66 0.00 0.00 0.03  0.00  0.00  0.00 0.04 0.00
## 158      91568        K F_eggs 0.00 0.00 0.01  0.00  0.00 0.05 0.35 0.01 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 159      91569        K      F 0.00 0.00 0.28  0.03  0.00 0.84 0.99 0.11 0.05 0.38  0.03  0.03  0.03 0.01 0.16
## 160      91570        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.09 0.00 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 161      91571        K      M 0.00 0.00 0.00  0.00  0.00 0.12 0.64 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 162      91572        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.01 0.61 0.00 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 163      91573        K      F 0.00 0.00 0.02  0.04  0.00 0.47 0.69 0.01 0.01 0.02  0.01  0.01  0.01 0.00 0.03
## 164      91574        K F_eggs 0.00 0.00 0.00  0.01  0.01 0.06 0.07 0.62 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 165      91575        K      M 0.01 0.00 0.00  0.02  0.00 0.10 0.15 0.16 0.01 0.67  0.36  0.36  0.36 0.05 0.48
## 166      91576        K      M 0.00 0.00 0.00  0.00  0.00 0.00 0.07 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 167      91577        K      M 0.00 0.00 0.00  0.00  0.00 0.01 0.56 0.04 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 168      91580        K      M 0.00 0.00 0.00  0.00  0.00 0.01 0.41 0.00 0.00 0.05  0.00  0.00  0.00 0.00 0.01
## 169      91581        K      M 0.00 0.00 0.00  0.00  0.00 0.00 0.04 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 170      91582        K F_eggs 0.00 0.00 0.00  0.02  0.00 0.13 0.39 0.11 0.02 0.03  0.00  0.00  0.00 0.00 0.03
## 171      91583        K F_eggs 0.00 0.00 0.00  0.00  0.00 0.02 0.69 0.00 0.00 0.06  0.00  0.00  0.00 0.03 0.02
## 172      91584        K      M 0.00 0.10 0.05  0.01  0.00 0.07 0.33 0.00 0.07 0.19  0.06  0.06  0.06 0.01 0.18
## 173      91585        K      M 0.00 0.00 0.01  0.00  0.00 0.01 0.22 0.00 0.00 0.12  0.00  0.00  0.00 0.00 0.02
## 174      91586        K      M 0.00 0.00 0.00  0.00  0.00 0.00 0.45 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 175      91587        K      F 0.00 0.00 0.00  0.00  0.00 0.26 0.34 0.00 0.00 0.01  0.00  0.00  0.00 0.00 0.02
## 176      91588        K F_eggs 0.00 0.00 0.01  0.00  0.00 0.02 0.70 0.00 0.00 0.02  0.02  0.02  0.02 0.08 0.01
## 177      91589        K      F 0.00 0.00 0.00  0.00  0.00 0.00 0.02 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 178      91590        K      M 0.00 0.00 0.00  0.00  0.00 0.15 0.98 0.01 0.02 0.05  0.13  0.13  0.13 0.06 0.13
## 179      91591        K      M 0.00 0.00 0.00  0.00  0.00 0.17 0.93 0.00 0.02 0.02  0.01  0.01  0.01 0.00 0.02
## 180      91592        K      M 0.00 0.00 0.00  0.00  0.00 0.00 0.04 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 181      91593        K      M 0.00 0.00 0.00  0.00  0.00 0.01 0.52 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 182      91594        K      F 0.00 0.00 0.00  0.00  0.00 0.04 0.29 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.02
## 183      91595        K      M 0.00 0.00 0.00  0.02  0.00 0.24 0.94 0.01 0.03 0.22  0.05  0.05  0.05 0.01 0.31
## 184      91596        K      M 0.00 0.00 0.00  0.01  0.00 0.10 0.94 0.08 0.00 0.11  0.02  0.02  0.02 0.09 0.05
## 185      91597        K      M 0.00 0.00 0.00  0.00  0.00 0.03 0.94 0.01 0.00 0.10  0.01  0.01  0.01 0.00 0.03
## 186      91598        K      F 0.00 0.00 0.04  0.04  0.01 0.41 0.98 0.11 0.04 0.09  0.01  0.01  0.01 0.00 0.08
## 187      91599        K      M 0.00 0.00 0.00  0.02  0.00 0.26 0.99 0.18 0.03 0.39  0.04  0.04  0.04 0.03 0.26
## 188      91600        K      M 0.00 0.00 0.02  0.00  0.00 0.05 0.76 0.00 0.00 0.10  0.00  0.00  0.00 0.00 0.00
## 189      91601        K      M 0.00 0.00 0.00  0.00  0.00 0.13 0.98 0.01 0.00 0.14  0.01  0.01  0.01 0.00 0.04
## 190      91602        K      F 0.00 0.00 0.00  0.00  0.00 0.01 0.49 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 191      91603        K F_eggs 0.00 0.00 0.00  0.01  0.00 0.09 0.58 0.05 0.02 0.10  0.00  0.00  0.00 0.00 0.05
## 192      91604        K      M 0.00 0.00 0.00  0.00  0.00 0.06 0.03 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 193      91605        K F_eggs 0.00 0.00 0.01  0.00  0.00 0.01 0.38 0.00 0.00 0.10  0.01  0.01  0.01 0.02 0.00
## 194      91606        K      M 0.00 0.00 0.00  0.00  0.00 0.13 0.37 0.01 0.00 0.15  0.02  0.02  0.02 0.03 0.03
## 195      91608        K      M 0.00 0.00 0.11  0.00  0.00 0.36 0.71 0.07 0.00 0.15  0.00  0.00  0.00 0.01 0.02
## 196      91609        K      M 0.00 0.00 0.00  0.00  0.00 0.02 0.25 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 197      91610        K F_eggs 0.00 0.00 0.03  0.00  0.00 0.07 0.60 0.03 0.00 0.09  0.02  0.02  0.02 0.08 0.02
## 198      91611        K      M 0.00 0.00 0.01  0.02  0.00 0.24 0.74 0.12 0.00 0.37  0.00  0.00  0.00 0.00 0.04
## 3        82401        N      M 0.00 0.00 0.00  0.05  0.00 0.07 0.00 0.83 0.00 0.23  0.00  0.00  0.00 0.00 0.02
## 4        82534        N      M 0.00 0.00 0.00  0.00  0.00 0.02 0.01 0.32 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 11       82577        N      F 0.00 0.00 0.00  0.27  0.38 0.35 0.02 0.94 0.03 0.14  0.00  0.00  0.00 0.00 0.05
## 12       82578        N      M 0.00 0.00 0.00  0.13  0.02 0.12 0.01 0.85 0.01 0.19  0.00  0.00  0.00 0.00 0.05
## 13       91182        N      M 0.00 0.00 0.00  0.00  0.00 0.02 0.04 0.59 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 14       91186        N      F 0.00 0.00 0.00  0.14  0.07 0.28 0.05 0.75 0.01 0.07  0.00  0.00  0.00 0.00 0.02
## 15       91187        N      F 0.00 0.00 0.00  0.08  0.01 0.19 0.09 0.78 0.00 0.06  0.00  0.00  0.00 0.00 0.01
## 16       91188        N      F 0.00 0.00 0.00  0.08  0.03 0.09 0.00 0.13 0.00 0.00  0.00  0.00  0.00 0.00 0.02
## 17       91189        N      M 0.00 0.00 0.00  0.09  0.00 0.01 0.00 0.36 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 18       91190        N      F 0.00 0.00 0.00  0.01  0.00 0.15 0.00 0.90 0.00 0.04  0.00  0.00  0.00 0.00 0.00
## 19       91191        N      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.17 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 20       91204        N      M 0.00 0.00 0.00  0.00  0.00 0.01 0.02 0.49 0.00 0.03  0.00  0.00  0.00 0.00 0.01
## 21       91205        N      M 0.00 0.00 0.00  0.46  0.04 0.12 0.00 0.82 0.01 0.21  0.00  0.00  0.00 0.00 0.05
## 22       91206        N      F 0.00 0.00 0.31  0.06  0.02 0.59 0.07 0.19 0.02 0.49  0.00  0.00  0.00 0.00 0.07
## 23       91207        N      M 0.00 0.00 0.00  0.01  0.00 0.09 0.08 0.86 0.00 0.06  0.00  0.00  0.00 0.00 0.00
## 24       91208        N      M 0.00 0.00 0.00  0.00  0.00 0.01 0.00 0.48 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 25       91209        N F_eggs 0.00 0.00 0.00  0.04  0.00 0.06 0.00 0.48 0.00 0.05  0.00  0.00  0.00 0.00 0.06
## 26       91210        N      F 0.00 0.00 0.07  0.11  0.01 0.69 0.42 0.96 0.01 0.27  0.00  0.00  0.00 0.00 0.08
## 27       91211        N      M 0.00 0.00 0.00  0.23  0.03 0.00 0.00 0.18 0.02 0.00  0.00  0.00  0.00 0.00 0.01
## 28       91212        N      F 0.00 0.00 0.00  0.13  0.05 0.01 0.00 0.39 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 29       91213        N      M 0.00 0.00 0.00  0.53  0.03 0.31 0.04 0.81 0.05 0.02  0.00  0.00  0.00 0.00 0.05
## 30       91214        N F_eggs 0.00 0.00 0.00  0.10  0.02 0.01 0.00 0.12 0.04 0.08  0.00  0.00  0.00 0.00 0.09
## 31       91215        N F_eggs 0.00 0.00 0.00  0.76  0.35 0.17 0.00 0.09 0.14 0.00  0.00  0.00  0.00 0.00 0.01
## 32       91221        N      F 0.00 0.00 0.02  0.59  0.04 0.60 0.03 0.91 0.02 0.30  0.00  0.00  0.00 0.00 0.09
## 33       91222        N      M 0.00 0.00 0.00  0.27  0.00 0.76 0.13 0.95 0.02 0.28  0.00  0.00  0.00 0.00 0.10
## 34       91223        N      M 0.00 0.00 0.00  0.09  0.00 0.06 0.00 0.90 0.00 0.06  0.00  0.00  0.00 0.00 0.02
## 35       91224        N      M 0.00 0.00 0.00  0.01  0.00 0.01 0.00 0.87 0.00 0.04  0.00  0.00  0.00 0.00 0.00
## 36       91225        N      F 0.00 0.00 0.00  0.02  0.00 0.00 0.00 0.45 0.00 0.01  0.00  0.00  0.00 0.00 0.01
## 37       91226        N      M 0.00 0.00 0.00  0.01  0.00 0.00 0.00 0.02 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 38       91227        N      F 0.00 0.00 0.10  0.16  0.01 0.73 0.17 0.76 0.02 0.08  0.00  0.00  0.00 0.00 0.04
## 39       91228        N      F 0.00 0.00 0.00  0.02  0.00 0.02 0.00 0.31 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 40       91229        N      F 0.00 0.00 0.00  0.12  0.02 0.24 0.10 0.33 0.02 0.06  0.00  0.00  0.00 0.00 0.05
## 41       91230        N      M 0.00 0.00 0.00  0.11  0.00 0.24 0.02 0.33 0.00 0.01  0.00  0.00  0.00 0.00 0.01
## 42       91231        N      M 0.00 0.00 0.00  0.10  0.00 0.08 0.00 0.44 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 43       91232        N      M 0.00 0.00 0.00  0.05  0.00 0.11 0.03 0.87 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 44       91233        N      M 0.00 0.00 0.00  0.17  0.00 0.33 0.11 0.97 0.00 0.05  0.00  0.00  0.00 0.00 0.01
## 45       91234        N      M 0.00 0.00 0.00  0.00  0.00 0.01 0.00 0.55 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 46       91235        N      F 0.00 0.00 0.01  0.03  0.00 0.20 0.00 0.78 0.00 0.04  0.00  0.00  0.00 0.00 0.00
## 47       91236        N F_eggs 0.00 0.00 0.00  0.24  0.01 0.67 0.03 0.68 0.00 0.06  0.00  0.00  0.00 0.00 0.01
## 48       91237        N      M 0.00 0.00 0.00  0.01  0.00 0.02 0.00 0.86 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 49       91239        N      M 0.00 0.00 0.02  0.42  0.00 0.69 0.28 0.98 0.00 0.57  0.00  0.00  0.00 0.00 0.15
## 50       91240        N      M 0.00 0.00 0.00  0.31  0.00 0.11 0.08 0.81 0.01 0.13  0.00  0.00  0.00 0.00 0.08
## 51       91241        N      M 0.00 0.00 0.00  0.01  0.00 0.01 0.00 0.70 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 52       91242        N      F 0.00 0.00 0.00  0.01  0.00 0.11 0.01 0.78 0.00 0.04  0.00  0.00  0.00 0.00 0.00
## 53       91243        N      F 0.00 0.00 0.00  0.19  0.03 0.49 0.01 0.93 0.00 0.18  0.00  0.00  0.00 0.00 0.01
## 54       91244        N      F 0.00 0.00 0.03  0.26  0.01 0.90 0.04 0.80 0.00 0.80  0.00  0.00  0.00 0.00 0.22
## 55       91245        N      F 0.00 0.00 0.00  0.02  0.00 0.06 0.00 0.71 0.00 0.02  0.00  0.00  0.00 0.00 0.00
## 56       91246        N      F 0.00 0.00 0.03  0.11  0.02 0.65 0.07 0.95 0.01 0.07  0.00  0.00  0.00 0.00 0.02
## 57       91247        N      F 0.00 0.00 0.00  0.08  0.01 0.54 0.26 0.99 0.01 0.20  0.00  0.00  0.00 0.00 0.07
## 1        80861        O      M 0.00 0.00 0.00  0.18  0.04 0.05 0.01 0.00 0.41 0.00  0.01  0.01  0.01 0.00 0.22
## 199      91617        O      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.00  0.00  0.00 0.00 0.00
## 200      91618        O      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.07 0.00  0.00  0.00  0.00 0.00 0.00
## 201      91619        O      M 0.00 0.00 0.00  0.00  0.01 0.00 0.00 0.00 0.28 0.00  0.00  0.00  0.00 0.00 0.03
## 202      91620        O F_eggs 0.00 0.00 0.00  0.00  0.08 0.00 0.00 0.00 0.61 0.00  0.02  0.02  0.02 0.00 0.10
## 203      91621        O      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 204      91622        O F_eggs 0.00 0.01 0.00  0.00  0.14 0.01 0.00 0.00 0.75 0.00  0.01  0.01  0.01 0.00 0.08
## 205      91623        O F_eggs 0.00 0.00 0.00  0.00  0.24 0.06 0.00 0.00 0.33 0.00  0.00  0.00  0.00 0.00 0.04
## 206      91624        O F_eggs 0.06 0.35 0.00  0.20  0.88 0.11 0.00 0.00 0.98 0.01  0.15  0.15  0.15 0.01 0.58
## 207      91625        O      F 0.04 0.01 0.00  0.01  0.17 0.01 0.00 0.00 0.44 0.01  0.15  0.15  0.15 0.00 0.42
## 208      91626        O      F 0.00 0.05 0.00  0.48  0.16 0.17 0.04 0.02 0.64 0.04  0.26  0.26  0.26 0.06 0.48
## 209      91627        O      F 0.00 0.01 0.00  0.73  0.91 0.17 0.02 0.02 0.77 0.04  0.02  0.02  0.02 0.00 0.42
## 210      91628        O      M 0.00 0.01 0.00  0.82  0.60 0.03 0.00 0.01 0.76 0.02  0.01  0.01  0.01 0.00 0.45
## 211      91629        O      F 0.00 0.00 0.00  0.48  0.21 0.21 0.15 0.03 0.88 0.09  0.26  0.26  0.26 0.01 0.89
## 212      91630        O F_eggs 0.00 0.01 0.00  0.60  0.55 0.04 0.00 0.00 0.82 0.00  0.00  0.00  0.00 0.00 0.21
## 213      91631        O F_eggs 0.00 0.00 0.00  0.02  0.01 0.00 0.00 0.00 0.43 0.00  0.00  0.00  0.00 0.00 0.05
## 214      91632        O F_eggs 0.04 0.07 0.01  0.06  0.40 0.07 0.00 0.00 0.47 0.01  0.01  0.01  0.01 0.00 0.19
## 215      91633        O F_eggs 0.00 0.00 0.00  0.01  0.00 0.00 0.00 0.00 0.24 0.00  0.00  0.00  0.00 0.00 0.04
## 216      91634        O F_eggs 0.01 0.02 0.00  0.01  0.03 0.00 0.00 0.00 0.59 0.00  0.11  0.11  0.11 0.00 0.37
## 217      91635        O      F 0.00 0.00 0.00  0.04  0.73 0.02 0.00 0.01 0.72 0.00  0.00  0.00  0.00 0.00 0.12
## 218      91636        O      M 0.00 0.01 0.00  0.01  0.07 0.00 0.00 0.00 0.75 0.00  0.02  0.02  0.02 0.00 0.17
## 219      91637        O      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.02 0.00  0.00  0.00  0.00 0.00 0.03
## 220      91638        O F_eggs 0.00 0.00 0.00  0.02  0.05 0.01 0.02 0.00 0.32 0.01  0.01  0.01  0.01 0.00 0.09
## 221      91643        O F_eggs 0.00 0.00 0.00  0.13  0.13 0.00 0.00 0.00 0.22 0.01  0.00  0.00  0.00 0.00 0.09
## 222      91644        O      M 0.00 0.00 0.00  0.12  0.01 0.00 0.00 0.00 0.62 0.00  0.01  0.01  0.01 0.00 0.21
## 223      91645        O      M 0.04 0.19 0.00  0.01  0.03 0.01 0.00 0.00 0.12 0.13  0.19  0.19  0.19 0.00 0.32
## 224      91651        P      M 0.00 0.00 0.00  0.02  0.00 0.07 0.32 0.13 0.02 0.62  0.00  0.00  0.00 0.00 0.25
## 225      91652        P F_eggs 0.00 0.00 0.00  0.00  0.00 0.01 0.00 0.00 0.00 0.53  0.00  0.00  0.00 0.00 0.03
## 226      91653        P F_eggs 0.00 0.00 0.00  0.00  0.00 0.03 0.01 0.00 0.00 0.01  0.00  0.00  0.00 0.00 0.00
## 227      91654        P      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.53  0.02  0.02  0.02 0.01 0.03
## 228      91655        P      M 0.00 0.00 0.00  0.00  0.00 0.01 0.06 0.03 0.00 0.42  0.02  0.02  0.02 0.00 0.03
## 229      91656        P      M 0.00 0.00 0.00  0.00  0.00 0.09 0.40 0.06 0.00 0.35  0.00  0.00  0.00 0.00 0.05
## 230      91657        P      M 0.00 0.00 0.34  0.08  0.00 0.78 0.18 0.44 0.01 0.98  0.01  0.01  0.01 0.00 0.26
## 231      91658        P      M 0.01 0.00 0.01  0.01  0.00 0.20 0.17 0.22 0.02 0.97  0.12  0.12  0.12 0.01 0.64
## 232      91659        P F_eggs 0.00 0.00 0.05  0.01  0.00 0.13 0.01 0.05 0.00 0.24  0.00  0.00  0.00 0.00 0.06
## 233      91660        P      M 0.00 0.00 0.00  0.00  0.00 0.02 0.02 0.00 0.00 0.48  0.01  0.01  0.01 0.00 0.05
## 234      91661        P      M 0.00 0.00 0.01  0.04  0.00 0.09 0.13 0.20 0.00 0.44  0.00  0.00  0.00 0.00 0.02
## 235      91662        P      M 0.00 0.00 0.02  0.02  0.00 0.11 0.01 0.10 0.00 0.65  0.01  0.01  0.01 0.00 0.09
## 236      91673        P      F 0.01 0.01 0.05  0.07  0.00 0.28 0.06 0.04 0.02 0.99  0.12  0.12  0.12 0.09 0.67
## 237      91674        P F_eggs 0.09 0.19 0.05  0.16  0.06 0.42 0.06 0.03 0.37 0.84  0.71  0.71  0.71 0.44 0.95
## 238      91675        P F_eggs 0.02 0.00 0.01  0.16  0.04 0.45 0.10 0.15 0.17 0.97  0.12  0.12  0.12 0.01 0.87
## 239      91676        P      F 0.00 0.01 0.01  0.00  0.00 0.02 0.00 0.00 0.00 0.57  0.02  0.02  0.02 0.00 0.16
## 240      91677        P      F 0.02 0.00 0.00  0.06  0.02 0.14 0.10 0.02 0.23 0.50  0.26  0.26  0.26 0.07 0.85
## 243      91680       Q3      M 0.01 0.07 0.00  0.28  0.01 0.02 0.00 0.00 0.04 0.03  0.29  0.29  0.29 0.01 0.29
## 248      91685       Q3      F 0.01 0.01 0.00  0.00  0.00 0.01 0.06 0.00 0.10 0.04  0.53  0.53  0.53 0.04 0.24
## 249      91688       Q3      M 0.28 0.44 0.01  0.00  0.00 0.02 0.03 0.00 0.01 0.06  0.35  0.35  0.35 0.03 0.13
## 250      91690       Q3 F_eggs 0.04 0.02 0.00  0.00  0.00 0.07 0.06 0.00 0.04 0.32  0.40  0.40  0.40 0.03 0.42
## 251      91691       Q3 F_eggs 0.35 0.12 0.00  0.01  0.01 0.07 0.06 0.00 0.12 0.49  0.92  0.92  0.92 0.63 0.87
## 252      91692       Q3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.01  0.09  0.09  0.09 0.08 0.04
## 253      91693       Q3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.01  0.01  0.01  0.01 0.00 0.01
## 254      91694       Q3      M 0.00 0.00 0.00  0.00  0.00 0.01 0.29 0.00 0.00 0.03  0.11  0.11  0.11 0.35 0.08
## 263      91704       Q3      M 0.01 0.00 0.00  0.06  0.00 0.03 0.03 0.01 0.02 0.10  0.14  0.14  0.14 0.00 0.35
## 268      91709       Q3      M 0.33 0.29 0.00  0.00  0.00 0.00 0.00 0.00 0.04 0.02  0.85  0.85  0.85 0.42 0.38
## 269      91710       Q3      M 0.17 0.22 0.00  0.01  0.02 0.01 0.02 0.00 0.22 0.03  0.94  0.94  0.94 0.49 0.61
## 270      91711       Q3      M 0.53 0.30 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.00  0.78  0.78  0.78 0.04 0.07
## 271      91712       Q3      M 0.07 0.10 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.23  0.23  0.23 0.02 0.00
## 272      91713       Q3      F 0.36 0.03 0.00  0.00  0.00 0.02 0.00 0.00 0.01 0.03  0.58  0.58  0.58 0.08 0.32
## 273      91714       Q3      F 0.64 0.11 0.00  0.00  0.00 0.00 0.00 0.00 0.02 0.00  0.55  0.55  0.55 0.00 0.07
## 274      91715       Q3 F_eggs 0.23 0.01 0.00  0.00  0.01 0.00 0.00 0.00 0.05 0.00  0.51  0.51  0.51 0.02 0.19
## 275      91716       Q3      M 0.07 0.03 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.21  0.21  0.21 0.01 0.01
## 276      91717       Q3      M 0.10 0.11 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.13  0.13  0.13 0.00 0.00
## 290      91731       Q3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 291      91732       Q3      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 292      91734       Q3      F 0.01 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.24  0.24  0.24 0.07 0.01
## 293      91735       Q3      F 0.30 0.18 0.01  0.00  0.00 0.02 0.03 0.00 0.02 0.34  0.78  0.78  0.78 0.09 0.44
## 294      91736       Q3      F 0.02 0.03 0.00  0.00  0.00 0.02 0.03 0.00 0.02 0.20  0.81  0.81  0.81 0.08 0.32
## 265      91706       Q4      F 0.00 0.04 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.30  0.30  0.30 0.36 0.00
## 266      91707       Q4 F_eggs 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.09  0.09  0.09 0.00 0.00
## 404     Cae731       Q4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.03 0.00
## 405     Cae732       Q4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.12 0.00
## 406     Cae733       Q4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 407     Cae734       Q4 F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.01 0.00
## 408     Cae735       Q4      M 0.00 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.01 0.00
## 409     Cae736       Q4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 410     Cae737       Q4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.03 0.00
## 416     Cae760       Q4      M 0.02 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 417     Cae761       Q4      M 0.01 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.05  0.05  0.05 0.17 0.00
## 418     Cae762       Q4      M 0.01 0.05 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.03 0.00
## 419     Cae763       Q4      M 0.01 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.06 0.00
## 420     Cae764       Q4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 241      91678       Q5 F_eggs 0.07 0.15 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.01  0.28  0.28  0.28 0.69 0.02
## 242      91679       Q5      F 0.02 0.07 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.03  0.03  0.03 0.04 0.00
## 244      91681       Q5 F_eggs 0.16 0.04 0.03  0.00  0.00 0.09 0.12 0.00 0.01 0.57  0.46  0.46  0.46 0.61 0.44
## 245      91682       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.01 0.00
## 246      91683       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 247      91684       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.12  0.12  0.12 0.32 0.00
## 255      91695       Q5      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 256      91696       Q5 F_eggs 0.01 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.13  0.13  0.13 0.11 0.01
## 257      91697       Q5 F_eggs 0.03 0.18 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.13  0.13  0.13 0.06 0.00
## 267      91708       Q5      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.02 0.00
## 277      91718       Q5      F 0.19 0.22 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.48  0.48  0.48 0.41 0.01
## 278      91719       Q5      F 0.00 0.09 0.00  0.00  0.00 0.00 0.01 0.00 0.00 0.00  0.22  0.22  0.22 0.87 0.02
## 279      91720       Q5      M 0.10 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.05  0.23  0.23  0.23 0.36 0.16
## 280      91721       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.25 0.00
## 281      91722       Q5      M 0.00 0.05 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.34 0.00
## 282      91723       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 283      91724       Q5 F_eggs 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.05  0.05  0.05 0.25 0.00
## 284      91725       Q5 F_eggs 0.00 0.04 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.10 0.00
## 285      91726       Q5 F_eggs 0.00 0.19 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.13 0.00
## 286      91727       Q5      M 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.05  0.05  0.05 0.00 0.00
## 287      91728       Q5      M 0.00 0.18 0.01  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.25 0.00
## 288      91729       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.02 0.00
## 289      91730       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.06 0.00
## 295      91737       Q5 F_eggs 0.01 0.06 0.00  0.00  0.00 0.00 0.01 0.00 0.00 0.00  0.23  0.23  0.23 0.84 0.01
## 296      91738       Q5      M 0.00 0.05 0.13  0.00  0.00 0.00 0.01 0.00 0.00 0.00  0.11  0.11  0.11 0.48 0.00
## 297      91739       Q5      M 0.00 0.01 0.12  0.00  0.00 0.01 0.06 0.00 0.00 0.04  0.11  0.11  0.11 0.64 0.02
## 298      91740       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.03  0.03  0.03 0.45 0.00
## 299      91742       Q5 F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 300      91743       Q5      F 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.02 0.00
## 301      91744       Q5      M 0.00 0.06 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.16 0.00
## 302      91745       Q5 F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 303      91747       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 304      91748       Q5      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 305      91749       Q5 F_eggs 0.00 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.05  0.05  0.05 0.25 0.00
## 306      91750       Q5      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.05  0.05  0.05 0.06 0.00
## 307      91751       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.01 0.00
## 308      91752       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.07 0.00
## 309      91753       Q5      M 0.00 0.04 0.11  0.00  0.00 0.00 0.02 0.00 0.00 0.00  0.02  0.02  0.02 0.14 0.00
## 310      91754       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.05 0.00
## 311      91755       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 312      91756       Q5      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.31 0.00
## 313      91757       Q5      M 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.05 0.00
## 7        82537        R      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.09  0.09  0.09 0.48 0.00
## 8        82538        R      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.25 0.00
## 314      91767        R F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.07  0.07  0.07 0.33 0.01
## 315      91768        R      M 0.00 0.02 0.02  0.00  0.00 0.06 0.46 0.00 0.00 0.35  0.19  0.19  0.19 0.63 0.12
## 5        82535        S      F 0.00 0.01 0.00  0.00  0.00 0.02 0.00 0.00 0.01 0.61  0.05  0.05  0.05 0.00 0.35
## 6        82536        S      M 0.08 0.02 0.00  0.26  0.02 0.32 0.07 0.03 0.09 0.24  0.48  0.48  0.48 0.01 0.64
## 316      91770        S      M 0.16 0.00 0.00  0.00  0.00 0.02 0.00 0.00 0.00 0.13  0.28  0.28  0.28 0.00 0.37
## 317      91771        S      F 0.01 0.00 0.00  0.01  0.00 0.01 0.00 0.02 0.03 0.27  0.07  0.07  0.07 0.00 0.44
## 318      91772        S      M 0.31 0.01 0.00  0.01  0.00 0.05 0.06 0.00 0.04 0.45  0.76  0.76  0.76 0.03 0.71
## 319      91775        S      M 0.01 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.04  0.16  0.16  0.16 0.04 0.18
## 320      91776        S      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.14  0.14  0.14 0.02 0.01
## 321      91777        S      M 0.17 0.02 0.00  0.02  0.00 0.11 0.21 0.00 0.04 0.28  0.78  0.78  0.78 0.21 0.77
## 322      91778        S      M 0.04 0.01 0.00  0.00  0.00 0.00 0.01 0.00 0.01 0.06  0.77  0.77  0.77 0.26 0.42
## 323      91779        S      M 0.18 0.16 0.01  0.25  0.01 0.26 0.11 0.03 0.19 0.91  0.84  0.84  0.84 0.21 0.98
## 324      91781        S      F 0.03 0.00 0.00  0.01  0.00 0.16 0.04 0.03 0.00 0.43  0.11  0.11  0.11 0.00 0.29
## 325      91782        S      M 0.00 0.00 0.00  0.13  0.00 0.21 0.10 0.11 0.01 0.67  0.05  0.05  0.05 0.00 0.42
## 326      91783        S      M 0.00 0.00 0.00  0.35  0.00 0.31 0.12 0.11 0.11 0.58  0.14  0.14  0.14 0.00 0.65
## 327      91784        S      M 0.01 0.00 0.00  0.00  0.00 0.10 0.03 0.00 0.00 0.09  0.24  0.24  0.24 0.06 0.22
## 328      91785        S      M 0.00 0.00 0.00  0.25  0.00 0.37 0.06 0.16 0.06 0.36  0.04  0.04  0.04 0.00 0.64
## 329      91786        S      M 0.00 0.00 0.00  0.40  0.00 0.26 0.04 0.11 0.14 0.31  0.07  0.07  0.07 0.00 0.57
## 330      91787        S      M 0.00 0.00 0.00  0.15  0.01 0.30 0.04 0.05 0.08 0.28  0.03  0.03  0.03 0.00 0.46
## 331      91790        S F_eggs 0.00 0.00 0.00  0.11  0.26 0.13 0.00 0.04 0.14 0.01  0.00  0.00  0.00 0.00 0.15
## 332      91791        S      M 0.01 0.02 0.02  0.11  0.01 0.70 0.47 0.05 0.18 0.61  0.11  0.11  0.11 0.10 0.81
## 333      91793        S      M 0.01 0.02 0.00  0.21  0.02 0.32 0.30 0.03 0.47 0.34  0.68  0.68  0.68 0.16 0.87
## 334      91794        S F_eggs 0.14 0.07 0.00  0.53  0.21 0.45 0.16 0.15 0.47 0.77  0.62  0.62  0.62 0.25 0.99
## 335      91795        S      F 0.21 0.01 0.00  0.04  0.10 0.02 0.00 0.01 0.15 0.32  0.16  0.16  0.16 0.02 0.67
## 336      91796        S      M 0.00 0.04 0.00  0.54  0.09 0.04 0.00 0.03 0.11 0.13  0.03  0.03  0.03 0.00 0.22
## 337      91797        S      M 0.32 0.06 0.00  0.11  0.02 0.09 0.00 0.00 0.03 0.33  0.10  0.10  0.10 0.00 0.54
## 338      91798        S      F 0.03 0.11 0.00  0.11  0.03 0.01 0.00 0.00 0.40 0.02  0.16  0.16  0.16 0.01 0.53
## 339      91799        S F_eggs 0.00 0.01 0.00  0.00  0.01 0.01 0.00 0.00 0.11 0.17  0.01  0.01  0.01 0.01 0.26
## 340      91800        S F_eggs 0.00 0.00 0.00  0.02  0.02 0.01 0.00 0.00 0.18 0.04  0.03  0.03  0.03 0.00 0.61
## 341      91801        S      M 0.00 0.02 0.00  0.00  0.00 0.01 0.01 0.00 0.48 0.00  0.02  0.02  0.02 0.00 0.19
## 342      91802        S F_eggs 0.00 0.00 0.00  0.00  0.01 0.02 0.00 0.00 0.58 0.00  0.00  0.00  0.00 0.00 0.14
## 343      91803        S F_eggs 0.00 0.01 0.00  0.00  0.09 0.00 0.00 0.00 0.54 0.00  0.01  0.01  0.01 0.00 0.11
## 344      91804        S      F 0.08 0.13 0.01  0.19  0.01 0.14 0.00 0.00 0.08 0.09  0.52  0.52  0.52 0.08 0.52
## 345      91805        S      F 0.05 0.06 0.01  0.06  0.07 0.10 0.00 0.01 0.23 0.10  0.19  0.19  0.19 0.00 0.38
## 346      91806        S      F 0.01 0.02 0.00  0.13  0.01 0.02 0.01 0.00 0.32 0.50  0.11  0.11  0.11 0.00 0.79
## 347      91807        S      M 0.01 0.02 0.06  0.43  0.20 0.84 0.13 0.12 0.31 0.79  0.04  0.04  0.04 0.00 0.74
## 348      91808        S F_eggs 0.15 0.12 0.00  0.69  0.14 0.69 0.06 0.06 0.34 0.42  0.75  0.75  0.75 0.04 0.94
## 349      91809        S      F 0.03 0.01 0.00  0.20  0.01 0.42 0.19 0.07 0.20 0.47  0.74  0.74  0.74 0.56 0.96
## 350      91810        S      F 0.17 0.15 0.00  0.02  0.07 0.14 0.17 0.00 0.75 0.11  0.72  0.72  0.72 0.22 0.93
## 351      91811        S      M 0.02 0.12 0.00  0.09  0.32 0.06 0.03 0.00 0.96 0.05  0.17  0.17  0.17 0.03 0.77
## 352      91812        S      M 0.07 0.08 0.00  0.03  0.07 0.03 0.00 0.00 0.47 0.04  0.23  0.23  0.23 0.01 0.69
## 353      91813        S F_eggs 0.40 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.01 0.02  0.27  0.27  0.27 0.04 0.15
## 354      91814        S      M 0.01 0.03 0.00  0.23  0.26 0.17 0.01 0.02 0.48 0.12  0.11  0.11  0.11 0.10 0.76
## 355      91815        S      M 0.05 0.03 0.00  0.00  0.02 0.00 0.00 0.00 0.22 0.01  0.38  0.38  0.38 0.01 0.34
## 356      91816        S      M 0.01 0.00 0.00  0.01  0.06 0.01 0.01 0.00 0.55 0.02  0.08  0.08  0.08 0.00 0.45
## 357      91817        S      M 0.02 0.01 0.00  0.07  0.00 0.67 0.23 0.03 0.26 0.71  0.39  0.39  0.39 0.02 0.92
## 358      91818        S      F 0.06 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.04 0.17  0.08  0.08  0.08 0.00 0.20
## 359      91819        S      M 0.00 0.00 0.00  0.35  0.38 0.29 0.13 0.04 0.95 0.03  0.00  0.00  0.00 0.00 0.35
## 360      91820        S F_eggs 0.00 0.00 0.00  0.00  0.02 0.03 0.00 0.00 0.12 0.00  0.00  0.00  0.00 0.00 0.02
## 361      91821        S      F 0.00 0.00 0.00  0.03  0.90 0.03 0.01 0.00 0.64 0.01  0.00  0.00  0.00 0.00 0.10
## 362      91822        S      M 0.00 0.00 0.00  0.01  0.22 0.00 0.00 0.00 0.62 0.00  0.00  0.00  0.00 0.00 0.07
## 363      91823        S      M 0.00 0.00 0.00  0.00  0.04 0.00 0.00 0.00 0.56 0.00  0.01  0.01  0.01 0.00 0.22
## 364      91826        S      F 0.00 0.00 0.00  0.01  0.00 0.12 0.06 0.21 0.00 0.93  0.00  0.00  0.00 0.00 0.14
## 365      91827        S      F 0.00 0.00 0.00  0.00  0.00 0.01 0.00 0.01 0.01 0.01  0.01  0.01  0.01 0.00 0.02
## 366      91828        S      F 0.00 0.00 0.00  0.09  0.00 0.33 0.02 0.30 0.01 0.35  0.03  0.03  0.03 0.00 0.38
## 367      91829        S F_eggs 0.00 0.01 0.00  0.41  0.16 0.41 0.01 0.02 0.66 0.15  0.02  0.02  0.02 0.00 0.83
## 368      91830        S F_eggs 0.00 0.01 0.00  0.45  0.37 0.14 0.00 0.06 0.80 0.08  0.02  0.02  0.02 0.01 0.73
## 369      91831        S      F 0.01 0.05 0.00  0.06  0.22 0.02 0.00 0.00 0.38 0.07  0.02  0.02  0.02 0.01 0.40
## 370      91832        S      M 0.00 0.00 0.00  0.15  0.01 0.03 0.00 0.00 0.22 0.00  0.00  0.00  0.00 0.00 0.16
## 371      91833        S      M 0.08 0.16 0.00  0.27  0.10 0.04 0.04 0.00 0.76 0.11  0.74  0.74  0.74 0.05 0.91
## 372      91838        S F_eggs 0.00 0.00 0.01  0.32  0.02 0.42 0.31 0.16 0.29 0.71  0.28  0.28  0.28 0.07 0.85
## 373      91839        S      F 0.05 0.01 0.00  0.03  0.05 0.11 0.01 0.01 0.19 0.20  0.08  0.08  0.08 0.02 0.51
## 374      91842        S      M 0.36 0.21 0.00  0.01  0.01 0.03 0.06 0.00 0.23 0.30  0.98  0.98  0.98 0.48 0.87
## 375      91843        S      F 0.01 0.00 0.00  0.08  0.20 0.12 0.35 0.06 0.64 0.72  0.28  0.28  0.28 0.04 0.91
## 376      91844        S      F 0.01 0.11 0.01  0.00  0.00 0.16 0.03 0.00 0.01 0.08  0.16  0.16  0.16 0.51 0.22
## 377      91845        S      F 0.68 0.25 0.00  0.03  0.01 0.04 0.00 0.00 0.17 0.20  0.73  0.73  0.73 0.10 0.88
## 378      91846        S      M 0.02 0.03 0.00  0.20  0.01 0.10 0.02 0.00 0.22 0.05  0.44  0.44  0.44 0.02 0.68
## 379      91847        S      F 0.66 0.32 0.00  0.02  0.08 0.07 0.00 0.00 0.13 0.03  0.80  0.80  0.80 0.25 0.58
## 380      91848        S      M 0.22 0.19 0.00  0.47  0.24 0.31 0.12 0.02 0.71 0.40  0.92  0.92  0.92 0.18 0.98
## 258      91698   weeksi      M 0.01 0.00 0.00  0.04  0.01 0.14 0.00 0.07 0.05 0.29  0.02  0.02  0.02 0.00 0.39
## 259      91699   weeksi      M 0.00 0.00 0.00  0.05  0.00 0.28 0.11 0.44 0.01 0.62  0.01  0.01  0.01 0.00 0.33
## 262      91703   weeksi      M 0.01 0.10 0.01  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.00 0.02
## 264      91705   weeksi      M 0.00 0.00 0.02  0.01  0.00 0.09 0.08 0.00 0.03 0.18  0.02  0.02  0.02 0.00 0.10
## 440     Cae794   weeksi      M 0.29 0.11 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.60  0.60  0.60 0.02 0.10
## 441     Cae795   weeksi      M 0.40 0.09 0.00  0.07  0.03 0.19 0.09 0.00 0.43 0.55  0.70  0.70  0.70 0.08 0.96
## 442     Cae796   weeksi F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.08 0.00 0.17 0.03  0.09  0.09  0.09 0.00 0.28
## 466     Cae828   weeksi      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.14  0.00  0.00  0.00 0.00 0.01
## 467     Cae829   weeksi      M 0.00 0.00 0.00  0.02  0.00 0.02 0.06 0.00 0.01 0.38  0.12  0.12  0.12 0.00 0.20
## 468     Cae830   weeksi      F 0.04 0.00 0.00  0.00  0.00 0.01 0.02 0.00 0.00 0.71  0.19  0.19  0.19 0.01 0.38
## 469     Cae834   weeksi F_eggs 0.00 0.00 0.20  0.00  0.00 0.10 0.08 0.00 0.00 0.27  0.05  0.05  0.05 0.07 0.04
## 470     Cae835   weeksi F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.14  0.01  0.01  0.01 0.00 0.01
## 471     Cae836   weeksi F_eggs 0.00 0.00 0.00  0.00  0.00 0.02 0.02 0.01 0.00 0.74  0.00  0.00  0.00 0.00 0.17
## 472     Cae837   weeksi      M 0.00 0.00 0.00  0.00  0.00 0.00 0.01 0.00 0.00 0.08  0.06  0.06  0.06 0.01 0.07
## 473     Cae838   weeksi F_eggs 0.00 0.05 0.04  0.00  0.00 0.18 0.47 0.00 0.01 0.61  0.45  0.45  0.45 0.35 0.32
## 474     Cae839   weeksi      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.06  0.00  0.00  0.00 0.00 0.00
## 475     Cae840   weeksi      F 0.00 0.00 0.00  0.00  0.00 0.00 0.01 0.00 0.00 0.25  0.03  0.03  0.03 0.00 0.08
## 476     Cae842   weeksi      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.06  0.00  0.00  0.00 0.00 0.00
## 477     Cae846   weeksi      M 0.00 0.00 0.00  0.07  0.00 0.05 0.09 0.01 0.01 0.31  0.08  0.08  0.08 0.00 0.47
## 478     Cae847   weeksi F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 479     Cae848   weeksi      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.01  0.00  0.00  0.00 0.00 0.01
## 480     Cae849   weeksi      M 0.00 0.00 0.00  0.01  0.00 0.11 0.11 0.00 0.01 0.53  0.21  0.21  0.21 0.01 0.42
## 481     Cae850   weeksi F_eggs 0.01 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.41  0.05  0.05  0.05 0.05 0.04
## 482     Cae851   weeksi      M 0.00 0.00 0.00  0.00  0.00 0.01 0.07 0.00 0.00 0.12  0.00  0.00  0.00 0.00 0.09
## 483     Cae852   weeksi      M 0.00 0.01 0.00  0.08  0.00 0.13 0.13 0.00 0.04 0.09  0.20  0.20  0.20 0.03 0.38
## 484     Cae853   weeksi      M 0.00 0.00 0.00  0.00  0.00 0.00 0.01 0.00 0.00 0.02  0.00  0.00  0.00 0.00 0.00
## 485     Cae854   weeksi      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 447     Cae804       X2      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 448     Cae805       X2      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 449     Cae806       X2      M 0.00 0.02 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.02  0.02  0.02 0.04 0.00
## 426     Cae776       X3      M 0.00 0.01 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.01 0.00
## 427     Cae777       X3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 428     Cae778       X3 F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.01 0.00
## 429     Cae779       X3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 430     Cae780       X3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.00 0.00
## 431     Cae781       X3      F 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 432     Cae782       X3 F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 433     Cae783       X3      M 0.00 0.08 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.01 0.00
## 434     Cae784       X3      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.01  0.01  0.01 0.03 0.00
## 435     Cae785       X3      M 0.00 0.03 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.04  0.04  0.04 0.00 0.00
## 411     Cae738       X4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 412     Cae739       X4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 413     Cae740       X4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 414     Cae741       X4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 415     Cae742       X4      M 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 443     Cae797       X5      F 0.00 0.00 0.00  0.01  0.00 0.00 0.01 0.00 0.03 0.00  0.00  0.00  0.00 0.00 0.01
## 444     Cae798       X5      M 0.01 0.01 0.04  0.11  0.03 0.09 0.05 0.17 0.19 0.71  0.11  0.11  0.11 0.00 0.58
## 445     Cae799       X5 F_eggs 0.00 0.00 0.00  0.01  0.00 0.21 0.12 0.07 0.02 0.06  0.02  0.02  0.02 0.01 0.17
## 446     Cae800       X5      M 0.00 0.00 0.01  0.07  0.00 0.56 0.60 0.09 0.01 0.02  0.03  0.03  0.03 0.01 0.05
## 436     Cae786       X8      M 0.25 0.16 0.00  0.71  0.42 0.44 0.03 0.05 0.69 0.37  0.36  0.36  0.36 0.01 0.95
## 437     Cae787       X8      M 0.01 0.21 0.00  0.06  0.01 0.02 0.02 0.00 0.69 0.01  0.47  0.47  0.47 0.12 0.70
## 438     Cae788       X8      M 0.01 0.15 0.00  0.18  0.03 0.04 0.05 0.01 0.46 0.06  0.82  0.82  0.82 0.30 0.65
## 439     Cae789       X8      M 0.17 0.15 0.00  0.51  0.37 0.21 0.08 0.02 0.62 0.13  0.66  0.66  0.66 0.07 0.86
## 451     Cae808       X8 F_eggs 0.01 0.15 0.00  0.33  0.04 0.07 0.13 0.00 0.70 0.18  0.75  0.75  0.75 0.29 0.88
## 452     Cae809       X8      M 0.01 0.47 0.00  0.06  0.00 0.02 0.05 0.00 0.14 0.01  0.56  0.56  0.56 0.12 0.24
## 456     Cae813       X8      M 0.00 0.06 0.00  0.00  0.00 0.00 0.01 0.00 0.26 0.01  0.27  0.27  0.27 0.07 0.36
## 457     Cae814       X8      M 0.00 0.03 0.00  0.00  0.00 0.00 0.01 0.00 0.08 0.00  0.69  0.69  0.69 0.32 0.23
## 458     Cae815       X8 F_eggs 0.00 0.10 0.00  0.11  0.07 0.02 0.00 0.00 0.33 0.00  0.03  0.03  0.03 0.02 0.17
## 459     Cae816       X8 F_eggs 0.00 0.00 0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00  0.00 0.00 0.00
## 460     Cae817       X8      M 0.00 0.13 0.00  0.01  0.00 0.00 0.00 0.00 0.04 0.00  0.21  0.21  0.21 0.05 0.06
## 461     Cae823       X8      M 0.03 0.21 0.00  0.04  0.12 0.03 0.06 0.00 0.42 0.19  0.39  0.39  0.39 0.12 0.61
## 462     Cae824       X8 F_eggs 0.00 0.01 0.00  0.01  0.01 0.02 0.00 0.00 0.05 0.00  0.01  0.01  0.01 0.15 0.08
## 463     Cae825       X8      M 0.00 0.00 0.00  0.01  0.00 0.03 0.01 0.00 0.01 0.00  0.03  0.03  0.03 0.22 0.04
## 464     Cae826       X8      M 0.00 0.01 0.00  0.01  0.02 0.00 0.00 0.00 0.15 0.02  0.31  0.31  0.31 0.19 0.31
## 465     Cae827       X8      M 0.00 0.00 0.00  0.00  0.00 0.00 0.01 0.00 0.01 0.00  0.05  0.05  0.05 0.10 0.03
## 421     Cae765       X9 F_eggs 0.00 0.00 0.00  0.11  0.00 0.52 0.61 0.52 0.01 0.22  0.03  0.03  0.03 0.01 0.21
## 422     Cae766       X9      M 0.03 0.00 0.00  0.33  0.01 0.10 0.00 0.03 0.10 0.04  0.28  0.28  0.28 0.01 0.67
## 423     Cae767       X9 F_eggs 0.00 0.00 0.00  0.86  0.36 0.44 0.02 0.89 0.26 0.23  0.00  0.00  0.00 0.00 0.36
## 424     Cae768       X9      M 0.00 0.00 0.01  0.37  0.00 0.40 0.18 0.53 0.01 0.06  0.00  0.00  0.00 0.01 0.05
## 425     Cae769       X9      M 0.01 0.08 0.00  0.64  0.19 0.70 0.41 0.21 0.75 0.44  0.52  0.52  0.52 0.09 0.92
## 453     Cae810       X9      F 0.00 0.00 0.03  0.73  0.10 0.96 0.23 0.78 0.19 0.62  0.03  0.03  0.03 0.00 0.61
## 454     Cae811       X9      F 0.00 0.00 0.01  0.20  0.05 0.20 0.00 0.27 0.03 0.19  0.00  0.00  0.00 0.00 0.10
## 455     Cae812       X9      M 0.00 0.00 0.00  0.41  0.01 0.48 0.08 0.37 0.01 0.04  0.01  0.01  0.01 0.00 0.10
##     typweeksi typX2 typX3 typX4 typX5 typX8 typX9
## 69       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 70       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 71       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 72       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 73       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 74       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 75       0.00  0.00  0.00  0.00  0.00  0.02  0.00
## 76       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 77       0.01  0.00  0.00  0.00  0.00  0.00  0.00
## 78       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 79       0.01  0.00  0.02  0.00  0.00  0.03  0.00
## 80       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 81       0.01  0.00  0.04  0.00  0.00  0.12  0.00
## 82       0.00  0.00  0.00  0.00  0.00  0.03  0.01
## 83       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 84       0.01  0.00  0.00  0.00  0.00  0.00  0.00
## 85       0.00  0.00  0.03  0.00  0.00  0.43  0.02
## 86       0.02  0.00  0.05  0.00  0.00  0.01  0.00
## 87       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 88       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 89       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 90       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 91       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 92       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 93       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 94       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 95       0.01  0.00  0.00  0.00  0.00  0.01  0.00
## 96       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 97       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 2        0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 98       0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 99       0.00  0.00  0.00  0.00  0.00  0.05  0.00
## 100      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 101      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 102      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 103      0.00  0.00  0.00  0.00  0.00  0.06  0.00
## 104      0.02  0.00  0.00  0.00  0.01  0.00  0.00
## 105      0.00  0.00  0.00  0.00  0.00  0.05  0.00
## 106      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 107      0.00  0.01  0.02  0.00  0.00  0.02  0.00
## 108      0.00  0.00  0.00  0.00  0.03  0.01  0.00
## 109      0.00  0.00  0.01  0.00  0.00  0.04  0.00
## 110      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 111      0.00  0.00  0.00  0.00  0.00  0.04  0.00
## 112      0.00  0.00  0.00  0.00  0.01  0.35  0.01
## 113      0.00  0.00  0.00  0.00  0.00  0.26  0.00
## 114      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 115      0.00  0.04  0.01  0.00  0.00  0.10  0.00
## 116      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 117      0.00  0.00  0.01  0.00  0.00  0.02  0.00
## 118      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 119      0.00  0.00  0.03  0.01  0.00  0.01  0.00
## 120      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 121      0.00  0.00  0.00  0.00  0.00  0.37  0.00
## 122      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 123      0.00  0.00  0.01  0.00  0.00  0.10  0.00
## 124      0.23  0.00  0.01  0.00  0.00  0.02  0.00
## 125      0.03  0.00  0.00  0.00  0.01  0.15  0.02
## 126      0.00  0.00  0.00  0.00  0.00  0.02  0.00
## 127      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 58       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 59       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 60       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 61       0.01  0.00  0.00  0.00  0.01  0.00  0.00
## 62       0.00  0.00  0.00  0.00  0.00  0.00  0.02
## 63       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 64       0.01  0.00  0.00  0.00  0.00  0.00  0.01
## 65       0.01  0.00  0.00  0.00  0.03  0.02  0.07
## 66       0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 67       0.07  0.00  0.00  0.00  0.01  0.00  0.00
## 68       0.02  0.00  0.00  0.00  0.14  0.00  0.00
## 128      0.00  0.00  0.00  0.00  0.00  0.00  0.02
## 129      0.00  0.00  0.00  0.00  0.00  0.00  0.02
## 135      0.12  0.00  0.00  0.00  0.18  0.44  0.46
## 383      0.05  0.00  0.00  0.00  0.54  0.45  0.93
## 384      0.00  0.00  0.00  0.00  0.00  0.01  0.03
## 385      0.27  0.00  0.00  0.00  0.77  0.66  0.54
## 386      0.00  0.00  0.00  0.00  0.02  0.04  0.15
## 387      0.08  0.00  0.00  0.00  0.12  0.31  0.41
## 388      0.01  0.00  0.00  0.00  0.02  0.18  0.35
## 389      0.00  0.00  0.00  0.00  0.02  0.00  0.35
## 390      0.04  0.00  0.00  0.00  0.39  0.34  0.06
## 391      0.00  0.00  0.00  0.00  0.02  0.03  0.41
## 392      0.00  0.00  0.00  0.00  0.03  0.00  0.46
## 393      0.01  0.00  0.00  0.00  0.38  0.04  0.90
## 394      0.03  0.00  0.00  0.00  0.07  0.04  0.62
## 395      0.00  0.00  0.00  0.00  0.07  0.00  0.27
## 396      0.01  0.00  0.00  0.00  0.22  0.04  0.61
## 397      0.00  0.00  0.00  0.00  0.01  0.00  0.11
## 398      0.00  0.00  0.00  0.00  0.01  0.00  0.14
## 130      0.00  0.00  0.00  0.00  0.13  0.04  0.05
## 131      0.00  0.00  0.00  0.00  0.01  0.06  0.03
## 132      0.00  0.00  0.00  0.00  0.02  0.07  0.20
## 133      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 134      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 136      0.00  0.00  0.00  0.00  0.03  0.00  0.08
## 137      0.19  0.00  0.00  0.00  0.74  0.04  0.73
## 138      0.00  0.00  0.00  0.00  0.09  0.00  0.31
## 139      0.41  0.00  0.00  0.00  0.12  0.10  0.61
## 9        0.01  0.00  0.00  0.00  0.01  0.00  0.01
## 10       0.83  0.00  0.00  0.00  0.14  0.03  0.01
## 140      0.33  0.00  0.00  0.00  0.55  0.00  0.05
## 141      0.46  0.00  0.00  0.00  0.61  0.01  0.59
## 142      0.01  0.00  0.00  0.00  0.03  0.01  0.47
## 143      0.00  0.00  0.00  0.00  0.04  0.00  0.01
## 144      0.35  0.00  0.00  0.00  0.85  0.15  0.73
## 145      0.38  0.00  0.00  0.00  0.15  0.05  0.02
## 146      0.43  0.00  0.00  0.00  0.93  0.21  0.74
## 147      0.07  0.00  0.00  0.00  0.01  0.00  0.00
## 148      0.00  0.00  0.00  0.00  0.01  0.00  0.02
## 149      0.03  0.00  0.00  0.00  0.26  0.02  0.03
## 150      0.68  0.00  0.00  0.00  0.79  0.63  0.57
## 151      0.02  0.00  0.00  0.00  0.03  0.00  0.00
## 152      0.01  0.00  0.00  0.00  0.06  0.00  0.00
## 153      0.00  0.00  0.00  0.00  0.13  0.01  0.02
## 154      0.01  0.00  0.00  0.00  0.02  0.00  0.00
## 155      0.00  0.00  0.00  0.00  0.02  0.00  0.00
## 156      0.01  0.00  0.00  0.00  0.01  0.00  0.01
## 157      0.01  0.00  0.00  0.00  0.01  0.00  0.00
## 158      0.00  0.00  0.00  0.00  0.02  0.00  0.00
## 159      0.27  0.00  0.00  0.00  0.75  0.01  0.27
## 160      0.26  0.00  0.00  0.00  0.04  0.00  0.00
## 161      0.00  0.00  0.00  0.00  0.34  0.00  0.02
## 162      0.00  0.00  0.00  0.00  0.06  0.00  0.00
## 163      0.00  0.00  0.00  0.00  0.06  0.03  0.24
## 164      0.00  0.00  0.00  0.00  0.27  0.00  0.07
## 165      0.49  0.00  0.00  0.00  0.26  0.02  0.29
## 166      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 167      0.01  0.00  0.00  0.00  0.20  0.00  0.02
## 168      0.08  0.00  0.00  0.00  0.00  0.00  0.00
## 169      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 170      0.00  0.00  0.00  0.00  0.15  0.03  0.13
## 171      0.04  0.00  0.00  0.00  0.02  0.01  0.00
## 172      0.33  0.00  0.00  0.00  0.04  0.16  0.05
## 173      0.03  0.00  0.00  0.00  0.00  0.00  0.01
## 174      0.00  0.00  0.00  0.00  0.05  0.00  0.00
## 175      0.01  0.00  0.00  0.00  0.01  0.00  0.00
## 176      0.01  0.00  0.00  0.00  0.03  0.00  0.00
## 177      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 178      0.04  0.00  0.00  0.00  0.21  0.06  0.10
## 179      0.01  0.00  0.00  0.00  0.07  0.01  0.05
## 180      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 181      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 182      0.00  0.00  0.00  0.00  0.01  0.00  0.02
## 183      0.67  0.00  0.00  0.00  0.29  0.06  0.09
## 184      0.07  0.00  0.00  0.00  0.43  0.07  0.20
## 185      0.05  0.00  0.00  0.00  0.08  0.00  0.02
## 186      0.01  0.00  0.00  0.00  0.53  0.04  0.22
## 187      0.18  0.00  0.00  0.00  0.48  0.05  0.23
## 188      0.07  0.00  0.00  0.00  0.01  0.00  0.00
## 189      0.18  0.00  0.00  0.00  0.15  0.01  0.05
## 190      0.00  0.00  0.00  0.00  0.01  0.00  0.00
## 191      0.03  0.00  0.00  0.00  0.12  0.00  0.01
## 192      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 193      0.16  0.00  0.00  0.00  0.03  0.00  0.00
## 194      0.33  0.00  0.00  0.00  0.07  0.01  0.12
## 195      0.00  0.00  0.00  0.00  0.16  0.00  0.17
## 196      0.00  0.00  0.00  0.00  0.01  0.00  0.00
## 197      0.01  0.00  0.00  0.00  0.54  0.01  0.09
## 198      0.18  0.00  0.00  0.00  0.12  0.01  0.17
## 3        0.01  0.00  0.00  0.00  0.32  0.00  0.24
## 4        0.00  0.00  0.00  0.00  0.02  0.00  0.01
## 11       0.00  0.00  0.00  0.00  0.04  0.00  0.23
## 12       0.00  0.00  0.00  0.00  0.16  0.00  0.50
## 13       0.00  0.00  0.00  0.00  0.06  0.00  0.06
## 14       0.00  0.00  0.00  0.00  0.08  0.00  0.22
## 15       0.00  0.00  0.00  0.00  0.47  0.00  0.19
## 16       0.00  0.00  0.00  0.00  0.00  0.00  0.09
## 17       0.00  0.00  0.00  0.00  0.00  0.00  0.26
## 18       0.00  0.00  0.00  0.00  0.03  0.00  0.11
## 19       0.00  0.00  0.00  0.00  0.00  0.00  0.01
## 20       0.00  0.00  0.00  0.00  0.29  0.00  0.11
## 21       0.00  0.00  0.00  0.00  0.04  0.00  0.73
## 22       0.02  0.00  0.00  0.00  0.17  0.01  0.44
## 23       0.00  0.00  0.00  0.00  0.22  0.00  0.13
## 24       0.00  0.00  0.00  0.00  0.03  0.00  0.07
## 25       0.00  0.00  0.00  0.00  0.00  0.00  0.30
## 26       0.01  0.00  0.00  0.00  0.58  0.01  0.78
## 27       0.00  0.00  0.00  0.00  0.00  0.00  0.04
## 28       0.00  0.00  0.00  0.00  0.00  0.00  0.03
## 29       0.00  0.00  0.00  0.00  0.39  0.01  0.64
## 30       0.00  0.00  0.00  0.00  0.00  0.00  0.06
## 31       0.00  0.00  0.00  0.00  0.00  0.00  0.09
## 32       0.01  0.00  0.00  0.00  0.07  0.00  0.43
## 33       0.02  0.00  0.00  0.00  0.17  0.00  0.38
## 34       0.00  0.00  0.00  0.00  0.26  0.00  0.42
## 35       0.00  0.00  0.00  0.00  0.01  0.00  0.04
## 36       0.00  0.00  0.00  0.00  0.00  0.00  0.16
## 37       0.00  0.00  0.00  0.00  0.00  0.00  0.01
## 38       0.00  0.00  0.00  0.00  0.62  0.01  0.50
## 39       0.00  0.00  0.00  0.00  0.00  0.00  0.02
## 40       0.01  0.00  0.00  0.00  0.26  0.00  0.16
## 41       0.00  0.00  0.00  0.00  0.07  0.00  0.20
## 42       0.00  0.00  0.00  0.00  0.00  0.00  0.19
## 43       0.00  0.00  0.00  0.00  0.05  0.00  0.22
## 44       0.00  0.00  0.00  0.00  0.31  0.00  0.60
## 45       0.00  0.00  0.00  0.00  0.00  0.00  0.02
## 46       0.00  0.00  0.00  0.00  0.00  0.00  0.18
## 47       0.00  0.00  0.00  0.00  0.02  0.00  0.09
## 48       0.00  0.00  0.00  0.00  0.00  0.00  0.06
## 49       0.05  0.00  0.00  0.00  0.34  0.02  0.92
## 50       0.03  0.00  0.00  0.00  0.68  0.03  0.82
## 51       0.00  0.00  0.00  0.00  0.01  0.00  0.05
## 52       0.00  0.00  0.00  0.00  0.01  0.00  0.03
## 53       0.00  0.00  0.00  0.00  0.07  0.00  0.30
## 54       0.08  0.00  0.00  0.00  0.12  0.00  0.55
## 55       0.00  0.00  0.00  0.00  0.00  0.00  0.03
## 56       0.00  0.00  0.00  0.00  0.15  0.00  0.31
## 57       0.00  0.00  0.00  0.00  0.41  0.00  0.52
## 1        0.00  0.00  0.00  0.00  0.00  0.12  0.10
## 199      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 200      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 201      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 202      0.00  0.00  0.00  0.00  0.01  0.05  0.01
## 203      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 204      0.00  0.00  0.00  0.00  0.01  0.01  0.00
## 205      0.00  0.00  0.00  0.00  0.08  0.01  0.02
## 206      0.00  0.00  0.00  0.00  0.08  0.46  0.04
## 207      0.00  0.00  0.00  0.00  0.02  0.05  0.02
## 208      0.03  0.00  0.00  0.00  0.39  0.61  0.23
## 209      0.00  0.00  0.00  0.00  0.04  0.32  0.11
## 210      0.00  0.00  0.00  0.00  0.03  0.61  0.20
## 211      0.07  0.00  0.00  0.00  0.12  0.61  0.31
## 212      0.00  0.00  0.00  0.00  0.01  0.05  0.02
## 213      0.00  0.00  0.00  0.00  0.01  0.01  0.00
## 214      0.00  0.00  0.00  0.00  0.00  0.02  0.01
## 215      0.00  0.00  0.00  0.00  0.01  0.03  0.00
## 216      0.01  0.00  0.00  0.00  0.00  0.33  0.00
## 217      0.00  0.00  0.00  0.00  0.02  0.02  0.02
## 218      0.00  0.00  0.00  0.00  0.00  0.16  0.01
## 219      0.00  0.00  0.00  0.00  0.01  0.03  0.01
## 220      0.01  0.00  0.00  0.00  0.03  0.02  0.00
## 221      0.00  0.00  0.00  0.00  0.10  0.08  0.01
## 222      0.01  0.00  0.00  0.00  0.01  0.07  0.01
## 223      0.06  0.00  0.00  0.00  0.04  0.17  0.04
## 224      0.46  0.00  0.00  0.00  0.21  0.02  0.21
## 225      0.06  0.00  0.00  0.00  0.00  0.00  0.00
## 226      0.01  0.00  0.00  0.00  0.01  0.00  0.00
## 227      0.09  0.00  0.00  0.00  0.00  0.00  0.01
## 228      0.02  0.00  0.00  0.00  0.02  0.00  0.02
## 229      0.03  0.00  0.00  0.00  0.01  0.00  0.02
## 230      0.54  0.00  0.00  0.00  0.17  0.00  0.55
## 231      0.71  0.00  0.00  0.00  0.17  0.02  0.45
## 232      0.06  0.00  0.00  0.00  0.00  0.00  0.04
## 233      0.29  0.00  0.00  0.00  0.00  0.00  0.00
## 234      0.03  0.00  0.00  0.00  0.03  0.00  0.08
## 235      0.05  0.00  0.00  0.00  0.02  0.00  0.32
## 236      0.86  0.00  0.00  0.00  0.06  0.07  0.17
## 237      0.44  0.00  0.00  0.00  0.17  0.60  0.44
## 238      0.75  0.00  0.00  0.00  0.39  0.05  0.21
## 239      0.24  0.00  0.00  0.00  0.00  0.00  0.01
## 240      0.57  0.00  0.00  0.00  0.61  0.18  0.08
## 243      0.02  0.00  0.00  0.00  0.09  0.66  0.43
## 248      0.07  0.00  0.00  0.00  0.16  0.15  0.06
## 249      0.11  0.00  0.00  0.00  0.01  0.02  0.00
## 250      0.78  0.00  0.00  0.00  0.02  0.01  0.01
## 251      0.31  0.00  0.01  0.00  0.01  0.25  0.03
## 252      0.16  0.00  0.00  0.00  0.00  0.02  0.00
## 253      0.02  0.00  0.00  0.00  0.02  0.00  0.00
## 254      0.09  0.00  0.01  0.00  0.01  0.09  0.00
## 263      0.13  0.00  0.00  0.00  0.03  0.02  0.12
## 268      0.30  0.00  0.53  0.00  0.00  0.11  0.00
## 269      0.02  0.00  0.03  0.00  0.02  0.90  0.08
## 270      0.01  0.00  0.01  0.00  0.00  0.10  0.00
## 271      0.00  0.10  0.51  0.00  0.00  0.02  0.00
## 272      0.11  0.00  0.00  0.00  0.01  0.01  0.00
## 273      0.00  0.00  0.00  0.00  0.01  0.02  0.00
## 274      0.00  0.00  0.00  0.00  0.01  0.09  0.02
## 275      0.00  0.00  0.00  0.00  0.00  0.13  0.00
## 276      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 290      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 291      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 292      0.01  0.00  0.00  0.00  0.00  0.00  0.00
## 293      0.40  0.00  0.01  0.00  0.02  0.10  0.03
## 294      0.63  0.00  0.00  0.00  0.10  0.05  0.03
## 265      0.02  0.00  0.07  0.00  0.00  0.01  0.00
## 266      0.00  0.00  0.02  0.10  0.00  0.00  0.00
## 404      0.00  0.00  0.09  0.00  0.00  0.00  0.00
## 405      0.00  0.02  0.07  0.00  0.00  0.00  0.00
## 406      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 407      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 408      0.00  0.01  0.02  0.00  0.00  0.00  0.00
## 409      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 410      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 416      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 417      0.00  0.00  0.02  0.00  0.00  0.00  0.00
## 418      0.00  0.09  0.78  0.00  0.00  0.00  0.00
## 419      0.00  0.03  0.01  0.00  0.00  0.00  0.00
## 420      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 241      0.01  0.04  0.12  0.00  0.00  0.01  0.00
## 242      0.00  0.02  0.02  0.00  0.00  0.00  0.00
## 244      0.10  0.00  0.00  0.00  0.03  0.08  0.03
## 245      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 246      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 247      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 255      0.00  0.00  0.02  0.00  0.00  0.00  0.00
## 256      0.00  0.00  0.00  0.00  0.01  0.01  0.00
## 257      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 267      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 277      0.00  0.01  0.18  0.02  0.00  0.09  0.00
## 278      0.01  0.01  0.08  0.00  0.00  0.09  0.00
## 279      0.05  0.00  0.00  0.00  0.00  0.03  0.00
## 280      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 281      0.00  0.01  0.03  0.00  0.00  0.00  0.00
## 282      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 283      0.00  0.00  0.12  0.00  0.00  0.00  0.00
## 284      0.00  0.01  0.10  0.00  0.00  0.00  0.00
## 285      0.00  0.39  0.05  0.00  0.00  0.01  0.00
## 286      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 287      0.00  0.01  0.01  0.00  0.00  0.05  0.00
## 288      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 289      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 295      0.00  0.00  0.02  0.00  0.00  0.01  0.00
## 296      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 297      0.00  0.00  0.00  0.00  0.03  0.09  0.02
## 298      0.00  0.00  0.00  0.00  0.00  0.03  0.00
## 299      0.00  0.01  0.03  0.00  0.00  0.00  0.00
## 300      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 301      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 302      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 303      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 304      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 305      0.00  0.00  0.15  0.00  0.00  0.01  0.00
## 306      0.00  0.00  0.02  0.00  0.00  0.00  0.00
## 307      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 308      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 309      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 310      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 311      0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 312      0.00  0.00  0.00  0.00  0.00  0.00  0.00
## 313      0.00  0.01  0.01  0.00  0.00  0.00  0.00
## 7        0.00  0.00  0.01  0.00  0.00  0.00  0.00
## 8        0.00  0.00  0.00  0.00  0.00  0.03  0.00
## 314      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 315      0.45  0.00  0.00  0.00  0.02  0.05  0.01
## 5        0.66  0.00  0.00  0.00  0.00  0.01  0.00
## 6        0.21  0.00  0.00  0.00  0.56  0.17  0.42
## 316      0.31  0.00  0.00  0.00  0.01  0.01  0.06
## 317      0.06  0.00  0.00  0.00  0.01  0.04  0.16
## 318      0.58  0.00  0.00  0.00  0.04  0.06  0.21
## 319      0.18  0.00  0.01  0.00  0.00  0.07  0.01
## 320      0.02  0.00  0.00  0.00  0.00  0.06  0.00
## 321      0.36  0.00  0.01  0.00  0.07  0.38  0.29
## 322      0.17  0.00  0.00  0.00  0.00  0.33  0.04
## 323      0.79  0.00  0.00  0.00  0.17  0.77  0.69
## 324      0.54  0.00  0.00  0.00  0.32  0.00  0.17
## 325      0.31  0.00  0.00  0.00  0.03  0.01  0.44
## 326      0.75  0.00  0.00  0.00  0.32  0.07  0.61
## 327      0.07  0.00  0.00  0.00  0.01  0.02  0.08
## 328      0.31  0.00  0.00  0.00  0.11  0.04  0.79
## 329      0.42  0.00  0.00  0.00  0.54  0.29  0.68
## 330      0.17  0.00  0.00  0.00  0.03  0.02  0.49
## 331      0.00  0.00  0.00  0.00  0.01  0.01  0.05
## 332      0.35  0.00  0.00  0.00  0.15  0.29  0.47
## 333      0.33  0.00  0.00  0.00  0.31  0.73  0.71
## 334      0.44  0.00  0.00  0.00  0.71  0.81  0.76
## 335      0.04  0.00  0.00  0.00  0.01  0.08  0.06
## 336      0.01  0.00  0.00  0.00  0.11  0.36  0.19
## 337      0.08  0.00  0.00  0.00  0.00  0.02  0.07
## 338      0.02  0.00  0.00  0.00  0.03  0.44  0.02
## 339      0.02  0.00  0.00  0.00  0.00  0.01  0.00
## 340      0.03  0.00  0.00  0.00  0.00  0.03  0.00
## 341      0.02  0.00  0.00  0.00  0.00  0.05  0.00
## 342      0.00  0.00  0.00  0.00  0.06  0.01  0.00
## 343      0.00  0.00  0.00  0.00  0.00  0.03  0.00
## 344      0.04  0.00  0.00  0.00  0.04  0.31  0.25
## 345      0.03  0.00  0.00  0.00  0.57  0.14  0.25
## 346      0.71  0.00  0.00  0.00  0.01  0.10  0.05
## 347      0.13  0.00  0.00  0.00  0.02  0.07  0.48
## 348      0.23  0.00  0.00  0.00  0.19  0.42  0.78
## 349      0.43  0.00  0.00  0.00  0.42  0.68  0.55
## 350      0.15  0.00  0.05  0.00  0.11  0.58  0.05
## 351      0.06  0.00  0.01  0.00  0.18  0.57  0.02
## 352      0.06  0.00  0.00  0.00  0.18  0.44  0.09
## 353      0.02  0.00  0.01  0.00  0.00  0.01  0.00
## 354      0.01  0.00  0.00  0.00  0.03  0.62  0.33
## 355      0.01  0.00  0.00  0.01  0.02  0.46  0.03
## 356      0.03  0.00  0.00  0.00  0.43  0.16  0.03
## 357      0.84  0.00  0.00  0.00  0.20  0.10  0.40
## 358      0.23  0.00  0.00  0.00  0.00  0.00  0.00
## 359      0.01  0.00  0.00  0.00  0.39  0.11  0.21
## 360      0.00  0.00  0.00  0.00  0.00  0.01  0.01
## 361      0.00  0.00  0.00  0.00  0.03  0.12  0.01
## 362      0.00  0.00  0.00  0.00  0.02  0.01  0.00
## 363      0.00  0.00  0.00  0.00  0.10  0.09  0.01
## 364      0.67  0.00  0.00  0.00  0.11  0.00  0.07
## 365      0.00  0.00  0.00  0.00  0.23  0.00  0.03
## 366      0.06  0.00  0.00  0.00  0.03  0.01  0.69
## 367      0.05  0.00  0.00  0.00  0.05  0.25  0.15
## 368      0.01  0.00  0.00  0.00  0.06  0.46  0.23
## 369      0.00  0.00  0.00  0.00  0.00  0.25  0.03
## 370      0.00  0.00  0.00  0.00  0.00  0.09  0.01
## 371      0.11  0.00  0.00  0.00  0.05  0.90  0.20
## 372      0.41  0.00  0.00  0.00  0.20  0.31  0.44
## 373      0.08  0.00  0.00  0.00  0.23  0.02  0.02
## 374      0.43  0.00  0.00  0.00  0.04  0.47  0.08
## 375      0.37  0.00  0.00  0.00  0.30  0.29  0.19
## 376      0.07  0.00  0.00  0.00  0.02  0.12  0.03
## 377      0.30  0.00  0.02  0.00  0.02  0.19  0.02
## 378      0.26  0.00  0.00  0.00  0.31  0.43  0.12
## 379      0.01  0.00  0.00  0.00  0.01  0.22  0.04
## 380      0.45  0.00  0.00  0.00  0.65  0.69  0.41
## 258      0.18  0.00  0.00  0.00  0.13  0.00  0.28
## 259      0.37  0.00  0.00  0.00  0.40  0.00  0.17
## 262      0.02  0.00  0.00  0.00  0.00  0.00  0.00
## 264      0.46  0.00  0.00  0.00  0.05  0.00  0.03
## 440      0.04  0.00  0.01  0.00  0.00  0.07  0.00
## 441      0.81  0.00  0.01  0.00  0.57  0.33  0.22
## 442      0.16  0.00  0.00  0.00  0.02  0.08  0.00
## 466      0.25  0.00  0.00  0.00  0.01  0.00  0.00
## 467      0.94  0.00  0.00  0.00  0.22  0.04  0.10
## 468      1.00  0.00  0.00  0.00  0.01  0.00  0.00
## 469      0.13  0.00  0.00  0.00  0.11  0.00  0.01
## 470      0.33  0.00  0.00  0.00  0.00  0.00  0.00
## 471      0.74  0.00  0.00  0.00  0.02  0.00  0.01
## 472      0.96  0.00  0.00  0.00  0.01  0.01  0.00
## 473      0.83  0.00  0.00  0.00  0.25  0.09  0.03
## 474      0.19  0.00  0.00  0.00  0.00  0.00  0.00
## 475      0.98  0.00  0.00  0.00  0.00  0.00  0.00
## 476      0.42  0.00  0.00  0.00  0.01  0.00  0.00
## 477      0.67  0.00  0.00  0.00  0.10  0.13  0.17
## 478      0.08  0.00  0.00  0.00  0.00  0.00  0.00
## 479      0.27  0.00  0.00  0.00  0.00  0.00  0.00
## 480      0.99  0.00  0.00  0.00  0.14  0.05  0.16
## 481      0.47  0.00  0.00  0.00  0.01  0.00  0.00
## 482      0.66  0.00  0.00  0.00  0.03  0.01  0.03
## 483      0.63  0.00  0.00  0.00  0.19  0.32  0.19
## 484      0.17  0.00  0.00  0.00  0.00  0.00  0.00
## 485      0.02  0.00  0.00  0.00  0.00  0.00  0.00
## 447      0.00  0.85  0.00  0.00  0.00  0.00  0.00
## 448      0.00  0.96  0.07  0.00  0.00  0.00  0.00
## 449      0.00  0.63  0.41  0.09  0.00  0.01  0.00
## 426      0.00  0.16  0.99  0.00  0.00  0.00  0.00
## 427      0.00  0.00  0.62  0.00  0.00  0.00  0.00
## 428      0.00  0.00  0.74  0.00  0.00  0.00  0.00
## 429      0.00  0.68  0.46  0.05  0.00  0.00  0.00
## 430      0.00  0.00  0.63  0.00  0.00  0.00  0.00
## 431      0.00  0.03  0.35  0.00  0.00  0.00  0.00
## 432      0.00  0.00  0.67  0.00  0.00  0.00  0.00
## 433      0.00  0.00  0.48  0.00  0.00  0.00  0.00
## 434      0.00  0.09  0.99  0.00  0.00  0.00  0.00
## 435      0.00  0.19  0.92  0.01  0.00  0.00  0.00
## 411      0.00  0.00  0.00  0.47  0.00  0.00  0.00
## 412      0.00  0.00  0.00  0.03  0.00  0.00  0.00
## 413      0.00  0.00  0.00  0.98  0.00  0.00  0.00
## 414      0.00  0.00  0.00  0.08  0.00  0.00  0.00
## 415      0.00  0.00  0.00  0.91  0.00  0.00  0.00
## 443      0.00  0.00  0.00  0.00  0.32  0.03  0.02
## 444      0.35  0.00  0.00  0.00  0.67  0.12  0.35
## 445      0.06  0.00  0.00  0.00  0.95  0.02  0.18
## 446      0.01  0.00  0.00  0.00  0.80  0.03  0.40
## 436      0.14  0.00  0.00  0.00  0.11  0.38  0.61
## 437      0.04  0.00  0.03  0.04  0.19  1.00  0.17
## 438      0.05  0.00  0.00  0.00  0.43  1.00  0.46
## 439      0.07  0.00  0.00  0.00  0.58  0.87  0.70
## 451      0.39  0.00  0.01  0.00  0.59  0.99  0.28
## 452      0.03  0.00  0.00  0.00  0.01  0.70  0.05
## 456      0.03  0.00  0.03  0.20  0.07  0.95  0.02
## 457      0.02  0.00  0.03  0.09  0.06  0.88  0.03
## 458      0.00  0.00  0.00  0.00  0.05  0.86  0.05
## 459      0.00  0.00  0.00  0.00  0.00  0.01  0.00
## 460      0.00  0.00  0.00  0.00  0.00  0.88  0.01
## 461      0.03  0.00  0.00  0.00  0.03  0.82  0.18
## 462      0.00  0.00  0.00  0.00  0.05  0.70  0.08
## 463      0.00  0.00  0.00  0.00  0.11  0.62  0.12
## 464      0.00  0.00  0.00  0.00  0.03  0.86  0.10
## 465      0.00  0.00  0.00  0.00  0.03  0.74  0.02
## 421      0.04  0.00  0.00  0.00  0.23  0.08  0.88
## 422      0.02  0.00  0.00  0.00  0.07  0.31  0.68
## 423      0.01  0.00  0.00  0.00  0.30  0.02  0.90
## 424      0.00  0.00  0.00  0.00  0.20  0.15  0.88
## 425      0.24  0.00  0.00  0.00  0.85  0.93  0.99
## 453      0.19  0.00  0.00  0.00  0.91  0.07  0.98
## 454      0.01  0.00  0.00  0.00  0.16  0.01  0.67
## 455      0.00  0.00  0.00  0.00  0.29  0.17  0.98

4.2 cancellata

### 9 Classify specimen to species
cancellata <- shape_8[c(486), c(2:15)] #new specimen to classify
cancellata <- as.matrix(cancellata)
# get classification score
p.A <- cancellata%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- cancellata%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- cancellata%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- cancellata%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- cancellata%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- cancellata%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- cancellata%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- cancellata%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- cancellata%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- cancellata%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- cancellata%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- cancellata%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- cancellata%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- cancellata%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- cancellata%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- cancellata%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- cancellata%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- cancellata%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- cancellata%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- cancellata%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- cancellata%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- cancellata%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

cancellata.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(cancellata.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(cancellata.posteriors) <- "cancellata.posteriors"
cancellata.posteriors <- round(cancellata.posteriors, digits=3)
cancellata.posteriors
##        cancellata.posteriors
## A                      0.000
## B                      0.000
## E                      0.000
## H1                     0.001
## H2                     0.007
## I                      0.000
## K                      0.002
## N                      0.004
## O                      0.902
## P                      0.002
## Q3                     0.000
## Q4                     0.000
## Q5                     0.000
## R                      0.000
## S                      0.079
## weeksi                 0.000
## X2                     0.000
## X3                     0.000
## X4                     0.000
## X5                     0.001
## X8                     0.002
## X9                     0.000
#typicality probability
d2.A <- (t(as.vector(cancellata)-mean.A))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(cancellata)-mean.B))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(cancellata)-mean.E))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(cancellata)-mean.H1))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(cancellata)-mean.H2))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(cancellata)-mean.I))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(cancellata)-mean.K))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(cancellata)-mean.N))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(cancellata)-mean.O))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(cancellata)-mean.P))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(cancellata)-mean.Q3))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(cancellata)-mean.Q4))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(cancellata)-mean.Q5))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(cancellata)-mean.R))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(cancellata)-mean.S))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(cancellata)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(cancellata)-mean.X2))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(cancellata)-mean.X3))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(cancellata)-mean.X4))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(cancellata)-mean.X5))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(cancellata)-mean.X8))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(cancellata)-mean.X9))%*%solve(cov.d)%*%(as.vector(cancellata)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

cancellata.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(cancellata.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(cancellata.typicality) <- "cancellata.typicality"
cancellata.typicality <- round(cancellata.typicality, digits=6)
cancellata.typicality
##        cancellata.typicality
## A                   0.000000
## B                   0.000001
## E                   0.000000
## H1                  0.004144
## H2                  0.044584
## I                   0.002952
## K                   0.005147
## N                   0.008606
## O                   0.223405
## P                   0.009827
## Q3                  0.000028
## Q4                  0.000000
## Q5                  0.000000
## R                   0.000003
## S                   0.040988
## weeksi              0.000413
## X2                  0.000000
## X3                  0.000000
## X4                  0.000000
## X5                  0.013969
## X8                  0.009213
## X9                  0.005408

The drawing of Ozestheria cancellata can be assigned to O (90.2%) or S (7.9%).

4.3 minor J54045a

### 9 Classify specimen to species
minor <- shape_8[c(487), c(2:15)] #new specimen to classify
minor <- as.matrix(minor)
# get classification score
p.A <- minor%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- minor%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- minor%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- minor%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- minor%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- minor%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- minor%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- minor%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- minor%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- minor%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- minor%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- minor%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- minor%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- minor%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- minor%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- minor%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- minor%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- minor%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- minor%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- minor%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- minor%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- minor%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

minor.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(minor.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(minor.posteriors) <- "minor.posteriors"
minor.posteriors <- round(minor.posteriors, digits=3)
minor.posteriors
##        minor.posteriors
## A                 0.009
## B                 0.912
## E                 0.036
## H1                0.000
## H2                0.000
## I                 0.001
## K                 0.000
## N                 0.000
## O                 0.002
## P                 0.003
## Q3                0.007
## Q4                0.000
## Q5                0.000
## R                 0.000
## S                 0.028
## weeksi            0.000
## X2                0.000
## X3                0.000
## X4                0.000
## X5                0.000
## X8                0.001
## X9                0.000
#typicality probability
d2.A <- (t(as.vector(minor)-mean.A))%*%solve(cov.d)%*%(as.vector(minor)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(minor)-mean.B))%*%solve(cov.d)%*%(as.vector(minor)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(minor)-mean.E))%*%solve(cov.d)%*%(as.vector(minor)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(minor)-mean.H1))%*%solve(cov.d)%*%(as.vector(minor)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(minor)-mean.H2))%*%solve(cov.d)%*%(as.vector(minor)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(minor)-mean.I))%*%solve(cov.d)%*%(as.vector(minor)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(minor)-mean.K))%*%solve(cov.d)%*%(as.vector(minor)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(minor)-mean.N))%*%solve(cov.d)%*%(as.vector(minor)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(minor)-mean.O))%*%solve(cov.d)%*%(as.vector(minor)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(minor)-mean.P))%*%solve(cov.d)%*%(as.vector(minor)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(minor)-mean.Q3))%*%solve(cov.d)%*%(as.vector(minor)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(minor)-mean.Q4))%*%solve(cov.d)%*%(as.vector(minor)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(minor)-mean.Q5))%*%solve(cov.d)%*%(as.vector(minor)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(minor)-mean.R))%*%solve(cov.d)%*%(as.vector(minor)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(minor)-mean.S))%*%solve(cov.d)%*%(as.vector(minor)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(minor)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(minor)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(minor)-mean.X2))%*%solve(cov.d)%*%(as.vector(minor)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(minor)-mean.X3))%*%solve(cov.d)%*%(as.vector(minor)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(minor)-mean.X4))%*%solve(cov.d)%*%(as.vector(minor)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(minor)-mean.X5))%*%solve(cov.d)%*%(as.vector(minor)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(minor)-mean.X8))%*%solve(cov.d)%*%(as.vector(minor)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(minor)-mean.X9))%*%solve(cov.d)%*%(as.vector(minor)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

minor.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(minor.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(minor.typicality) <- "minor.typicality"
minor.typicality <- round(minor.typicality, digits=6)
minor.typicality
##        minor.typicality
## A              0.195540
## B              0.819668
## E              0.483795
## H1             0.036887
## H2             0.049726
## I              0.171635
## K              0.023968
## N              0.000369
## O              0.088090
## P              0.149694
## Q3             0.186853
## Q4             0.003219
## Q5             0.016877
## R              0.025732
## S              0.221517
## weeksi         0.027896
## X2             0.000005
## X3             0.000168
## X4             0.000000
## X5             0.061969
## X8             0.109543
## X9             0.045336

Specimen J54045a (Ozestheria minor) can be assigned to B (91.2%), B also receives the highest typicality score.

4.4 minor_mean

### 9 Classify specimen to species
minor_mean <- colMeans(shape_8[c(487:491), c(2:15)]) #new specimen to classify
#minor_mean <- as.matrix(minor_mean)
# get classification score
p.A <- minor_mean%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- minor_mean%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- minor_mean%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- minor_mean%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- minor_mean%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- minor_mean%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- minor_mean%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- minor_mean%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- minor_mean%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- minor_mean%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- minor_mean%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- minor_mean%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- minor_mean%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- minor_mean%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- minor_mean%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- minor_mean%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- minor_mean%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- minor_mean%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- minor_mean%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- minor_mean%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- minor_mean%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- minor_mean%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

minor_mean.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(minor_mean.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(minor_mean.posteriors) <- "minor_mean.posteriors"
minor_mean.posteriors <- round(minor_mean.posteriors, digits=3)
minor_mean.posteriors
##        minor_mean.posteriors
## A                      0.004
## B                      0.137
## E                      0.006
## H1                     0.010
## H2                     0.083
## I                      0.011
## K                      0.006
## N                      0.000
## O                      0.190
## P                      0.006
## Q3                     0.028
## Q4                     0.000
## Q5                     0.000
## R                      0.001
## S                      0.429
## weeksi                 0.000
## X2                     0.000
## X3                     0.000
## X4                     0.000
## X5                     0.008
## X8                     0.075
## X9                     0.006
#typicality probability
d2.A <- (t(as.vector(minor_mean)-mean.A))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(minor_mean)-mean.B))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(minor_mean)-mean.E))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(minor_mean)-mean.H1))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(minor_mean)-mean.H2))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(minor_mean)-mean.I))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(minor_mean)-mean.K))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(minor_mean)-mean.N))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(minor_mean)-mean.O))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(minor_mean)-mean.P))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(minor_mean)-mean.Q3))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(minor_mean)-mean.Q4))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(minor_mean)-mean.Q5))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(minor_mean)-mean.R))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(minor_mean)-mean.S))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(minor_mean)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(minor_mean)-mean.X2))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(minor_mean)-mean.X3))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(minor_mean)-mean.X4))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(minor_mean)-mean.X5))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(minor_mean)-mean.X8))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(minor_mean)-mean.X9))%*%solve(cov.d)%*%(as.vector(minor_mean)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

minor_mean.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(minor_mean.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(minor_mean.typicality) <- "minor_mean.typicality"
minor_mean.typicality <- round(minor_mean.typicality, digits=6)
minor_mean.typicality
##        minor_mean.typicality
## A                   0.134366
## B                   0.519736
## E                   0.239716
## H1                  0.238502
## H2                  0.729531
## I                   0.448356
## K                   0.106440
## N                   0.016568
## O                   0.600102
## P                   0.193861
## Q3                  0.336633
## Q4                  0.000359
## Q5                  0.018379
## R                   0.140938
## S                   0.578957
## weeksi              0.012234
## X2                  0.000000
## X3                  0.000170
## X4                  0.000000
## X5                  0.400020
## X8                  0.529019
## X9                  0.279287

The mean shape of the five Ozestheria minor type specimens can be assigned to one of five lineages: S (42.9%), O (19.0%), B (13.7%), H2 (8.3%), or X8 (7.5%). In order to assign a lineage to O. minor, further carapace details of these five lineages must be compared with O. minor. Ozestheria minor receives overall high typicality scores, indicating that the carapace shape of O. minor is typical of the condyle_long Ozestheria morphospace.

4.5 typica J54046a

### 9 Classify specimen to species
typica <- shape_8[c(492), c(2:15)] #new specimen to classify
typica <- as.matrix(typica)
# get classification score
p.A <- typica%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- typica%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- typica%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- typica%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- typica%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- typica%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- typica%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- typica%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- typica%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- typica%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- typica%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- typica%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- typica%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- typica%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- typica%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- typica%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- typica%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- typica%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- typica%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- typica%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- typica%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- typica%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

typica.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(typica.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(typica.posteriors) <- "typica.posteriors"
typica.posteriors <- round(typica.posteriors, digits=3)
typica.posteriors
##        typica.posteriors
## A                  0.000
## B                  0.000
## E                  0.000
## H1                 0.000
## H2                 0.000
## I                  0.000
## K                  0.346
## N                  0.000
## O                  0.000
## P                  0.003
## Q3                 0.185
## Q4                 0.030
## Q5                 0.319
## R                  0.113
## S                  0.000
## weeksi             0.004
## X2                 0.000
## X3                 0.000
## X4                 0.000
## X5                 0.000
## X8                 0.000
## X9                 0.000
#typicality probability
d2.A <- (t(as.vector(typica)-mean.A))%*%solve(cov.d)%*%(as.vector(typica)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(typica)-mean.B))%*%solve(cov.d)%*%(as.vector(typica)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(typica)-mean.E))%*%solve(cov.d)%*%(as.vector(typica)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(typica)-mean.H1))%*%solve(cov.d)%*%(as.vector(typica)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(typica)-mean.H2))%*%solve(cov.d)%*%(as.vector(typica)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(typica)-mean.I))%*%solve(cov.d)%*%(as.vector(typica)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(typica)-mean.K))%*%solve(cov.d)%*%(as.vector(typica)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(typica)-mean.N))%*%solve(cov.d)%*%(as.vector(typica)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(typica)-mean.O))%*%solve(cov.d)%*%(as.vector(typica)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(typica)-mean.P))%*%solve(cov.d)%*%(as.vector(typica)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(typica)-mean.Q3))%*%solve(cov.d)%*%(as.vector(typica)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(typica)-mean.Q4))%*%solve(cov.d)%*%(as.vector(typica)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(typica)-mean.Q5))%*%solve(cov.d)%*%(as.vector(typica)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(typica)-mean.R))%*%solve(cov.d)%*%(as.vector(typica)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(typica)-mean.S))%*%solve(cov.d)%*%(as.vector(typica)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(typica)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(typica)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(typica)-mean.X2))%*%solve(cov.d)%*%(as.vector(typica)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(typica)-mean.X3))%*%solve(cov.d)%*%(as.vector(typica)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(typica)-mean.X4))%*%solve(cov.d)%*%(as.vector(typica)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(typica)-mean.X5))%*%solve(cov.d)%*%(as.vector(typica)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(typica)-mean.X8))%*%solve(cov.d)%*%(as.vector(typica)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(typica)-mean.X9))%*%solve(cov.d)%*%(as.vector(typica)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

typica.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(typica.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(typica.typicality) <- "typica.typicality"
typica.typicality <- round(typica.typicality, digits=6)
typica.typicality
##        typica.typicality
## A               0.000011
## B               0.000002
## E               0.000000
## H1              0.000000
## H2              0.000000
## I               0.000017
## K               0.009161
## N               0.000000
## O               0.000000
## P               0.000846
## Q3              0.011397
## Q4              0.004910
## Q5              0.010976
## R               0.024276
## S               0.000061
## weeksi          0.000792
## X2              0.000000
## X3              0.000000
## X4              0.000000
## X5              0.000207
## X8              0.000024
## X9              0.000093

Specimen J54046a (Ozestheria typica) can be assigned to K (34.6%), Q5 (31.9%), Q3 (18.5%), or R (11.3%). However, the typicality score for K is low, while R, Q3, and Q5 receive the highest typicality scores, rendering it more likely that specimen J54046a belongs to one of these lineages.

4.6 typica_mean

### 9 Classify specimen to species
typica_mean <- colMeans(shape_8[c(492:496), c(2:15)]) #new specimen to classify
#typica_mean <- as.matrix(typica_mean)
# get classification score
p.A <- typica_mean%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- typica_mean%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- typica_mean%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- typica_mean%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- typica_mean%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- typica_mean%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- typica_mean%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- typica_mean%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- typica_mean%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- typica_mean%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- typica_mean%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- typica_mean%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- typica_mean%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- typica_mean%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- typica_mean%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- typica_mean%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- typica_mean%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- typica_mean%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- typica_mean%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- typica_mean%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- typica_mean%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- typica_mean%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

typica_mean.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(typica_mean.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(typica_mean.posteriors) <- "typica_mean.posteriors"
typica_mean.posteriors <- round(typica_mean.posteriors, digits=3)
typica_mean.posteriors
##        typica_mean.posteriors
## A                       0.001
## B                       0.000
## E                       0.000
## H1                      0.000
## H2                      0.000
## I                       0.000
## K                       0.057
## N                       0.000
## O                       0.000
## P                       0.008
## Q3                      0.252
## Q4                      0.201
## Q5                      0.445
## R                       0.026
## S                       0.001
## weeksi                  0.009
## X2                      0.000
## X3                      0.000
## X4                      0.000
## X5                      0.000
## X8                      0.000
## X9                      0.000
#typicality probability
d2.A <- (t(as.vector(typica_mean)-mean.A))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(typica_mean)-mean.B))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(typica_mean)-mean.E))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(typica_mean)-mean.H1))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(typica_mean)-mean.H2))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(typica_mean)-mean.I))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(typica_mean)-mean.K))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(typica_mean)-mean.N))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(typica_mean)-mean.O))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(typica_mean)-mean.P))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(typica_mean)-mean.Q3))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(typica_mean)-mean.Q4))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(typica_mean)-mean.Q5))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(typica_mean)-mean.R))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(typica_mean)-mean.S))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(typica_mean)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(typica_mean)-mean.X2))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(typica_mean)-mean.X3))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(typica_mean)-mean.X4))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(typica_mean)-mean.X5))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(typica_mean)-mean.X8))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(typica_mean)-mean.X9))%*%solve(cov.d)%*%(as.vector(typica_mean)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

typica_mean.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(typica_mean.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(typica_mean.typicality) <- "typica_mean.typicality"
typica_mean.typicality <- round(typica_mean.typicality, digits=6)
typica_mean.typicality
##        typica_mean.typicality
## A                    0.013473
## B                    0.005274
## E                    0.013856
## H1                   0.000001
## H2                   0.000000
## I                    0.003927
## K                    0.085106
## N                    0.000004
## O                    0.000007
## P                    0.057969
## Q3                   0.268161
## Q4                   0.299358
## Q5                   0.264596
## R                    0.213662
## S                    0.006684
## weeksi               0.049603
## X2                   0.000000
## X3                   0.000091
## X4                   0.000000
## X5                   0.005128
## X8                   0.001009
## X9                   0.001816

The mean shape of the five Ozestheria typica syntypes can be assigned to lineages Q5 (44.5%), Q3 (25.2%), Q4 (20.1%), and K (5.7%). It is thus very likely that one of the closely related Q lineages can be assigned to O. typica. Q4, Q3, and Q5 also receive the highest typicality scores.

4.7 mariae C34420A

### 9 Classify specimen to species
mariae <- shape_8[c(399), c(2:15)] #new specimen to classify
mariae <- as.matrix(mariae)
# get classification score
p.A <- mariae%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- mariae%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- mariae%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- mariae%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- mariae%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- mariae%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- mariae%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- mariae%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- mariae%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- mariae%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- mariae%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- mariae%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- mariae%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- mariae%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- mariae%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- mariae%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- mariae%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- mariae%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- mariae%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- mariae%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- mariae%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- mariae%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

mariae.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(mariae.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(mariae.posteriors) <- "mariae.posteriors"
mariae.posteriors <- round(mariae.posteriors, digits=3)
mariae.posteriors
##        mariae.posteriors
## A                  0.000
## B                  0.000
## E                  0.000
## H1                 0.004
## H2                 0.001
## I                  0.001
## K                  0.125
## N                  0.798
## O                  0.001
## P                  0.004
## Q3                 0.000
## Q4                 0.000
## Q5                 0.000
## R                  0.000
## S                  0.013
## weeksi             0.000
## X2                 0.000
## X3                 0.000
## X4                 0.000
## X5                 0.020
## X8                 0.000
## X9                 0.034
#typicality probability
d2.A <- (t(as.vector(mariae)-mean.A))%*%solve(cov.d)%*%(as.vector(mariae)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(mariae)-mean.B))%*%solve(cov.d)%*%(as.vector(mariae)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(mariae)-mean.E))%*%solve(cov.d)%*%(as.vector(mariae)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(mariae)-mean.H1))%*%solve(cov.d)%*%(as.vector(mariae)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(mariae)-mean.H2))%*%solve(cov.d)%*%(as.vector(mariae)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(mariae)-mean.I))%*%solve(cov.d)%*%(as.vector(mariae)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(mariae)-mean.K))%*%solve(cov.d)%*%(as.vector(mariae)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(mariae)-mean.N))%*%solve(cov.d)%*%(as.vector(mariae)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(mariae)-mean.O))%*%solve(cov.d)%*%(as.vector(mariae)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(mariae)-mean.P))%*%solve(cov.d)%*%(as.vector(mariae)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(mariae)-mean.Q3))%*%solve(cov.d)%*%(as.vector(mariae)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(mariae)-mean.Q4))%*%solve(cov.d)%*%(as.vector(mariae)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(mariae)-mean.Q5))%*%solve(cov.d)%*%(as.vector(mariae)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(mariae)-mean.R))%*%solve(cov.d)%*%(as.vector(mariae)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(mariae)-mean.S))%*%solve(cov.d)%*%(as.vector(mariae)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(mariae)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(mariae)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(mariae)-mean.X2))%*%solve(cov.d)%*%(as.vector(mariae)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(mariae)-mean.X3))%*%solve(cov.d)%*%(as.vector(mariae)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(mariae)-mean.X4))%*%solve(cov.d)%*%(as.vector(mariae)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(mariae)-mean.X5))%*%solve(cov.d)%*%(as.vector(mariae)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(mariae)-mean.X8))%*%solve(cov.d)%*%(as.vector(mariae)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(mariae)-mean.X9))%*%solve(cov.d)%*%(as.vector(mariae)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

mariae.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(mariae.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(mariae.typicality) <- "mariae.typicality"
mariae.typicality <- round(mariae.typicality, digits=6)
mariae.typicality
##        mariae.typicality
## A               0.000001
## B               0.000000
## E               0.000001
## H1              0.072018
## H2              0.057468
## I               0.056906
## K               0.222338
## N               0.486089
## O               0.021456
## P               0.079527
## Q3              0.001090
## Q4              0.000000
## Q5              0.000000
## R               0.000037
## S               0.071952
## weeksi          0.003370
## X2              0.000000
## X3              0.000000
## X4              0.000000
## X5              0.323350
## X8              0.006557
## X9              0.301398

Specimen C34420A (Ozestheria mariae) can be assigned to N (79.8%) or K (12.5%). The shape of O. mariae represents a common shape within the Ozestheria morphospace.

4.8 mariae_mean

### 9 Classify specimen to species
mariae_mean <- colMeans(shape_8[c(399:403), c(2:15)]) #new specimen to classify

# get classification score
p.A <- mariae_mean%*%cj.A+cj0.A+log(All_singletons.lda$prior[1])
p.B <- mariae_mean%*%cj.B+cj0.B+log(All_singletons.lda$prior[2])
p.E <- mariae_mean%*%cj.E+cj0.E+log(All_singletons.lda$prior[3])
p.H1 <- mariae_mean%*%cj.H1+cj0.H1+log(All_singletons.lda$prior[4])
p.H2 <- mariae_mean%*%cj.H2+cj0.H2+log(All_singletons.lda$prior[5])
p.I <- mariae_mean%*%cj.I+cj0.I+log(All_singletons.lda$prior[6])
p.K <- mariae_mean%*%cj.K+cj0.K+log(All_singletons.lda$prior[7])
p.N <- mariae_mean%*%cj.N+cj0.N+log(All_singletons.lda$prior[8])
p.O <- mariae_mean%*%cj.O+cj0.O+log(All_singletons.lda$prior[9])
p.P <- mariae_mean%*%cj.P+cj0.P+log(All_singletons.lda$prior[10])
p.Q3 <- mariae_mean%*%cj.Q3+cj0.Q3+log(All_singletons.lda$prior[11])
p.Q4 <- mariae_mean%*%cj.Q4+cj0.Q4+log(All_singletons.lda$prior[12])
p.Q5 <- mariae_mean%*%cj.Q5+cj0.Q5+log(All_singletons.lda$prior[13])
p.R <- mariae_mean%*%cj.R+cj0.R+log(All_singletons.lda$prior[14])
p.S <- mariae_mean%*%cj.S+cj0.S+log(All_singletons.lda$prior[15])
p.weeksi <- mariae_mean%*%cj.weeksi+cj0.weeksi+log(All_singletons.lda$prior[16])
p.X2 <- mariae_mean%*%cj.X2+cj0.X2+log(All_singletons.lda$prior[17])
p.X3 <- mariae_mean%*%cj.X3+cj0.X3+log(All_singletons.lda$prior[18])
p.X4 <- mariae_mean%*%cj.X4+cj0.X4+log(All_singletons.lda$prior[19])
p.X5 <- mariae_mean%*%cj.X5+cj0.X5+log(All_singletons.lda$prior[20])
p.X8 <- mariae_mean%*%cj.X8+cj0.X8+log(All_singletons.lda$prior[21])
p.X9 <- mariae_mean%*%cj.X9+cj0.X9+log(All_singletons.lda$prior[22])

# posterior probability
post.A <- (exp(p.A-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.B <- (exp(p.B-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.E <- (exp(p.E-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H1 <- (exp(p.H1-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.H2 <- (exp(p.H2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.I <- (exp(p.I-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.K <- (exp(p.K-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.N <- (exp(p.N-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.O <- (exp(p.O-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.P <- (exp(p.P-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q3 <- (exp(p.Q3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q4 <- (exp(p.Q4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.Q5 <- (exp(p.Q5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.R <- (exp(p.R-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.S <- (exp(p.S-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.weeksi <- (exp(p.weeksi-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X2 <- (exp(p.X2-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X3 <- (exp(p.X3-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X4 <- (exp(p.X4-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X5 <- (exp(p.X5-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X8 <- (exp(p.X8-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

post.X9 <- (exp(p.X9-p.A))/(exp(p.B-p.A)+exp(p.A-p.A)+exp(p.E-p.A)+exp(p.H1-p.A)+exp(p.H2-p.A)+exp(p.I-p.A)+exp(p.K-p.A)+exp(p.N-p.A)+exp(p.O-p.A)+exp(p.P-p.A)+exp(p.Q3-p.A)+exp(p.Q4-p.A)+exp(p.Q5-p.A)+exp(p.R-p.A)+exp(p.S-p.A)+exp(p.weeksi-p.A)+exp(p.X2-p.A)+exp(p.X3-p.A)+exp(p.X4-p.A)+exp(p.X5-p.A)+exp(p.X8-p.A)+exp(p.X9-p.A))

mariae_mean.posteriors <- as.matrix(c(post.A, post.B, post.E, post.H1, post.H2, post.I, post.K, post.N, post.O, post.P, post.Q3, post.Q4, post.Q5, post.R, post.S, post.weeksi, post.X2, post.X3, post.X4, post.X5, post.X8, post.X9))
rownames(mariae_mean.posteriors) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(mariae_mean.posteriors) <- "mariae_mean.posteriors"
mariae_mean.posteriors <- round(mariae_mean.posteriors, digits=3)
mariae_mean.posteriors
##        mariae_mean.posteriors
## A                       0.000
## B                       0.000
## E                       0.000
## H1                      0.001
## H2                      0.000
## I                       0.002
## K                       0.543
## N                       0.378
## O                       0.000
## P                       0.008
## Q3                      0.000
## Q4                      0.000
## Q5                      0.000
## R                       0.000
## S                       0.007
## weeksi                  0.000
## X2                      0.000
## X3                      0.000
## X4                      0.000
## X5                      0.052
## X8                      0.000
## X9                      0.009
#typicality probability
d2.A <- (t(as.vector(mariae_mean)-mean.A))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.A)
  typicality.A <- pchisq(d2.A, df = 14, lower.tail = FALSE)
d2.B <- (t(as.vector(mariae_mean)-mean.B))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.B)
  typicality.B <- pchisq(d2.B, df = 14, lower.tail = FALSE)
d2.E <- (t(as.vector(mariae_mean)-mean.E))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.E)
  typicality.E <- pchisq(d2.E, df = 14, lower.tail = FALSE)
d2.H1 <- (t(as.vector(mariae_mean)-mean.H1))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.H1)
  typicality.H1 <- pchisq(d2.H1, df = 14, lower.tail = FALSE)
d2.H2 <- (t(as.vector(mariae_mean)-mean.H2))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.H2)
  typicality.H2 <- pchisq(d2.H2, df = 14, lower.tail = FALSE)
d2.I <- (t(as.vector(mariae_mean)-mean.I))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.I)
  typicality.I <- pchisq(d2.I, df = 14, lower.tail = FALSE)
d2.K <- (t(as.vector(mariae_mean)-mean.K))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.K)
  typicality.K <- pchisq(d2.K, df = 14, lower.tail = FALSE)
d2.N <- (t(as.vector(mariae_mean)-mean.N))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.N)
  typicality.N <- pchisq(d2.N, df = 14, lower.tail = FALSE)
d2.O <- (t(as.vector(mariae_mean)-mean.O))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.O)
  typicality.O <- pchisq(d2.O, df = 14, lower.tail = FALSE)
d2.P <- (t(as.vector(mariae_mean)-mean.P))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.P)
  typicality.P <- pchisq(d2.P, df = 14, lower.tail = FALSE)
d2.Q3 <- (t(as.vector(mariae_mean)-mean.Q3))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.Q3)
  typicality.Q3 <- pchisq(d2.Q3, df = 14, lower.tail = FALSE)
d2.Q4 <- (t(as.vector(mariae_mean)-mean.Q4))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.Q4)
  typicality.Q4 <- pchisq(d2.Q4, df = 14, lower.tail = FALSE)
d2.Q5 <- (t(as.vector(mariae_mean)-mean.Q5))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.Q5)
  typicality.Q5 <- pchisq(d2.Q5, df = 14, lower.tail = FALSE)
d2.R <- (t(as.vector(mariae_mean)-mean.R))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.R)
  typicality.R <- pchisq(d2.R, df = 14, lower.tail = FALSE)
d2.S <- (t(as.vector(mariae_mean)-mean.S))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.S)
  typicality.S <- pchisq(d2.S, df = 14, lower.tail = FALSE)
d2.weeksi <- (t(as.vector(mariae_mean)-mean.weeksi))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.weeksi)
  typicality.weeksi <- pchisq(d2.weeksi, df = 14, lower.tail = FALSE)
d2.X2 <- (t(as.vector(mariae_mean)-mean.X2))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.X2)
  typicality.X2 <- pchisq(d2.X2, df = 14, lower.tail = FALSE)
d2.X3 <- (t(as.vector(mariae_mean)-mean.X3))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.X3)
  typicality.X3 <- pchisq(d2.X3, df = 14, lower.tail = FALSE)
d2.X4 <- (t(as.vector(mariae_mean)-mean.X4))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.X4)
  typicality.X4 <- pchisq(d2.X4, df = 14, lower.tail = FALSE)
d2.X5 <- (t(as.vector(mariae_mean)-mean.X5))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.X5)
  typicality.X5 <- pchisq(d2.X5, df = 14, lower.tail = FALSE)
d2.X8 <- (t(as.vector(mariae_mean)-mean.X8))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.X8)
  typicality.X8 <- pchisq(d2.X8, df = 14, lower.tail = FALSE)
d2.X9 <- (t(as.vector(mariae_mean)-mean.X9))%*%solve(cov.d)%*%(as.vector(mariae_mean)-mean.X9)
  typicality.X9 <- pchisq(d2.X9, df = 14, lower.tail = FALSE)

mariae_mean.typicality <- as.matrix(c(typicality.A, typicality.B, typicality.E, typicality.H1, typicality.H2, typicality.I, typicality.K, typicality.N, typicality.O, typicality.P, typicality.Q3, typicality.Q4, typicality.Q5, typicality.R, typicality.S, typicality.weeksi, typicality.X2, typicality.X3, typicality.X4, typicality.X5, typicality.X8, typicality.X9))
rownames(mariae_mean.typicality) <- c("A", "B", "E", "H1", "H2", "I", "K", "N", "O", "P", "Q3", "Q4", "Q5", "R", "S", "weeksi", "X2", "X3", "X4", "X5", "X8", "X9")
colnames(mariae_mean.typicality) <- "mariae_mean.typicality"
mariae_mean.typicality <- round(mariae_mean.typicality, digits=6)
mariae_mean.typicality
##        mariae_mean.typicality
## A                    0.000001
## B                    0.000001
## E                    0.000835
## H1                   0.112863
## H2                   0.027490
## I                    0.324782
## K                    0.793840
## N                    0.773397
## O                    0.055342
## P                    0.342327
## Q3                   0.004249
## Q4                   0.000000
## Q5                   0.000002
## R                    0.003172
## S                    0.187329
## weeksi               0.039361
## X2                   0.000000
## X3                   0.000000
## X4                   0.000000
## X5                   0.844772
## X8                   0.041559
## X9                   0.476822

The mean shape of Ozestheria mariae can be assigned to K (54.3%), N (37.8%) or X5 (5.2%). X5 receives the highest typicality score. The shape of O. mariae represents a common shape within the Ozestheria morphospace.